综述

二次电池用局部高浓度电解质的研究进展与展望

  • 于喆 ,
  • 张建军 ,
  • 刘亭亭 ,
  • 唐犇 ,
  • 杨晓燕 ,
  • 周新红 ,
  • 崔光磊
展开
  • a 中国科学院青岛生物能源与过程研究所 青岛市储能产业技术研究院 青岛 266101;
    b 青岛科技大学 化学与分子工程学院 青岛 266042
于喆,女,青岛科技大学化学与分子工程学院硕士,中国科学院青岛生物能源与过程研究所联合培养硕士生.主要从事锂硫电池电解质的研究;崔光磊,研究员,博士生导师,2005年于中国科学院化学所获得有机化学博士学位,2005年9月至2009年2月先后在德国马普协会高分子所和固态所从事博士后研究.2009年2月起于中科院青岛生物能源与过程所工作.2009年入选中国科学院“百人计划”(终期评估优秀),2009年获山东省自然科学杰出青年基金资助,2015年入选山东省“泰山学者特聘专家”,2016年获国家自然科学杰出青年基金资助.主要从事低成本高效能源储存与转换器件的研究,作为负责人和主要参与者承担国家自然科学杰出青年基金,国家973计划,863计划,国家自然科学基金面上项目,省部级及中科院先导专项,企业横向项目等多项科研项目.

收稿日期: 2019-10-25

  网络出版日期: 2020-01-21

基金资助

项目受国家自然科学基金(Nos.51703236,51625204)资助.

Research Progress and Perspectives of Localized High-concentration Electrolytes for Secondary Batteries

  • Yu Zhe ,
  • Zhang Jianjun ,
  • Liu Tingting ,
  • Tang Ben ,
  • Yang Xiaoyan ,
  • Zhou Xinhong ,
  • Cui Guanglei
Expand
  • a Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao Industrial Energy Storage Technology Institute, Qingdao 266101, China;
    b College of Chemistry and Molecular Engineering, Qingdao University of Science&Technology, Qingdao 266042, China

Received date: 2019-10-25

  Online published: 2020-01-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51703236, 51625204).

摘要

电解质作为二次电池离子传导的重要介质,对于提升二次电池循环稳定性能、安全性能等方面起着至关重要的作用.局部高浓度电解质是指在高浓度电解质中加入“稀释剂”,形成盐的局部高浓度状态,既能兼具高浓度电解质的优异特性,又具有低成本和优良润湿性的特点,应用前景非常广阔.近几年,局部高浓度电解质在阻燃锂金属电池、高电压锂电池、低温锂电池、锂硫电池和钠电池等多方面应用广泛,且展现出非常好的使用效果.本综述重点从局部高浓度电解质的功能性应用角度出发,详细阐述了局部高浓度电解质的类型、制备、作用机理及其在不同二次电池中的功能性应用进展和主要研究现状,文末还对局部高浓度电解质的未来可能发展趋势进行了分析与展望.

本文引用格式

于喆 , 张建军 , 刘亭亭 , 唐犇 , 杨晓燕 , 周新红 , 崔光磊 . 二次电池用局部高浓度电解质的研究进展与展望[J]. 化学学报, 2020 , 78(2) : 114 -124 . DOI: 10.6023/A19100385

Abstract

The electrolyte, which is an important medium of ion conduction for secondary batteries, plays a crucial role in improving the cycling performance and safety performance of secondary batteries. Localized high-concentration electrolytes, which are formed by adding "diluent" into high-concentration electrolyte, not only reserve the outstanding properties of high-concentration electrolytes but also possess low viscosity, excellent wettability and low cost, promising broad application prospect. Localized high-concentration electrolytes have already played a part in flame-retardant lithium battery, high-voltage lithium battery, low-temperature lithium battery, lithium sulfur battery and sodium battery. Herein, this paper mainly reviews the types and preparation of localized high-concentration electrolytes and their functional mechanism and research status in various secondary batteries. We discuss the challenges and future development of localized high-concentration electrolytes and have the outlook at the end of the paper.

参考文献

[1] Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243.
[2] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
[3] Goodenough, J. B.; Park, K.-S. J. Am. Chem. Soc. 2013, 135, 1167.
[4] Xu, K. Chem. Rev. 2004, 104, 4303.
[5] He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202(in Chinese). (贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76, 202.)
[6] Wang, C. Q.; Qiu, F. L.; Deng, H.; Zhang, X. Y.; He, P.; Zhou, H. S. Acta Chim. Sinica 2017, 75, 241(in Chinese). (王超强, 邱飞龙, 邓瀚, 张晓禹, 何平, 周豪慎, 化学学报, 2017, 75, 241.)
[7] Gu, X. Y.; Hong, Y.; Ai, G.; Wang, C. Y.; Mao, W. F. Acta Chim. Sinica 2018, 76, 644(in Chinese). (顾晓瑜, 洪晔, 艾果, 王朝阳, 毛文峰, 化学学报, 2018, 76, 644.)
[8] Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. ChemSusChem 2015, 8, 2765.
[9] Lahiri, A.; Shah, N.; Dales, C. IEEE Spectrum 2018, 55, 34.
[10] Li, J.; Tang, S.; Huang, J.; Tao, X.; Zhou, Y.; Li, D. New Chem. Mater. 2012, 40, 6(in Chinese). (李军, 唐盛贺, 黄际伟, 陶熏, 周燕, 李大光, 化工新型材料, 2012, 40, 6.)
[11] Liu, X.; Yu, L. Battery 2004, 34, 449.
[12] Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D. J. Phys. Chem. C 2011, 115, 25132.
[13] Ahmad, S. Ionics 2009, 15, 309.
[14] Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F. Mater. Horiz. 2016, 3, 487.
[15] Azov, V. A.; Egorova, K. S.; Seitkalieva, M. M.; Kashina, A. S.; Ananikov, V. P. Chem. Soc. Rev. 2018, 47, 1250.
[16] Borodin, O.; Vatamanu, J.; Ren, X. J. Am. Chem. Soc. 2018, 256, 1155.
[17] Messaggi, F.; Ruggeri, I.; Genovese, D.; Zaccheroni, N.; Arbizzani, C.; Soavi, F. Electrochim. Acta 2017, 245, 288.
[18] Suo, L.; Fang, Z.; Hu, Y.-S.; Chen, L. Chinese Phys. B 2016, 25, 21.
[19] Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481.
[20] Zeng, Z.; Murugesan, V.; Han, K. S.; Jiang, X.; Cao, Y.; Xiao, L.; Ai, X.; Yang, H.; Zhang, J.-G.; Sushko, M. L.; Liu, J. Nature Energy 2018, 3, 674.
[21] Cao, R.; Mishra, K.; Li, X.; Qian, J.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J.-G. Nano Energy 2016, 30, 825.
[22] Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350, 938.
[23] McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Energy Environ. Sci. 2014, 7, 416.
[24] Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032.
[25] Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Sci. Adv. 2018, 4, 10.
[26] Peng, Z.; Zhao, N.; Zhang, Z.; Wan, H.; Lin, H.; Liu, M.; Shen, C.; He, H.; Guo, X.; Zhang, J.-G.; Wang, D. Nano Energy 2017, 39, 662.
[27] Wang, L. L.; Ma, J.; Wang, C.; Yu, X. R.; Liu, R.; Jiang, F.; Sun, X. W.; Du, A. B.; Zhou, X. H.; Cui, G. L. Adv. Sci. 2019, 6, 11.
[28] Yoo, E.; Zhou, H. ACS Appl. Mater. Interfaces 2017, 9, 21307.
[29] Deng, B. W.; Sun, D. M.; Wan, Q.; Wang, H.; Chen, T.; Li, X.; Qu, M. Z.; Peng, G. C. Acta Chim. Sinica 2018, 76, 259(in Chinese). (邓邦为, 孙大明, 万琦, 王昊, 陈滔, 李璇, 瞿美臻, 彭工厂, 化学学报, 2018, 76, 259.)
[30] Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nature Energy 2019, 4, 269.
[31] Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406.
[32] Chen, S.; Zheng, J.; Yu, L.; Ren, X.; Engelhard, M. H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J.; Zhang, J.-G. Joule 2018, 2, 1548.
[33] Zheng, J.; Chen, S.; Zhao, W.; Song, J.; Engelhard, M. H.; Zhang, J.-G. ACS Energy Lett. 2018, 3, 315.
[34] Xia, L.; Yu, L. P.; Hu, D.; George, C. Z. Acta Chim. Sinica 2017, 75, 1183(in Chinese). (夏兰, 余林颇, 胡笛, 陈政, 化学学报, 2017, 75, 1183.)
[35] Dagger, T.; Meier, V.; Hildebrand, S.; Brueggemann, D.; Winter, M.; Schappacher, F. M. Energy Technol. 2018, 6, 2001.
[36] Wang, J.; Lin, F.; Jia, H.; Yang, J.; Monroe, C. W.; NuLi, Y. Angew. Chem. Int. Ed. 2014, 53, 10099.
[37] Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Nano Energy 2019, 55, 93.
[38] Yang, H.; Guo, C.; Chen, J.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. Angew. Chem. Int. Ed. 2019, 58, 791.
[39] Yang, H.; Li, Q.; Guo, C.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. Chem Commun (Camb) 2018, 54, 4132.
[40] Ye, T.; Li, D.; Liu, H.; She, X.; Xia, Y.; Zhang, S.; Zhang, H.; Yang, D. Macromolecules 2018, 51, 9360.
[41] Zheng, J.; Ji, G.; Fan, X.; Chen, J.; Li, Q.; Wang, H.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. Adv. Energy Mater. 2019, 9, 1803774.
[42] Jia, H.; Zou, L.; Gao, P.; Cao, X.; Zhao, W.; He, Y.; Engelhard, M. H.; Burton, S. D.; Wang, H.; Ren, X.; Li, Q.; Yi, R.; Zhang, X.; Wang, C.; Xu, Z.; Li, X.; Zhang, J.-G.; Xu, W. Adv. Energy Mater. 2019, 9, 1900784.
[43] Du, J.; Lin, N.; Qian, Y. T. Acta Chim. Sinica 2017, 75, 147(in Chinese). (杜进, 林宁, 钱逸泰, 化学学报, 2017, 75, 147.)
[44] Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, 1706102.
[45] Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; Schroeder, M.; Alvarado, J.; Xu, K.; Meng, Y. S.; Liu, J.; Zhang, J.-G.; Xu, W. Chem 2018, 4, 1877.
[46] Ma, G.; Wang, L.; He, X.; Zhang, J.; Chen, H.; Xu, W.; Ding, Y. Adv. Energy Mater. 2018, 1, 5446.
[47] Ren, X.; Zou, L.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C.; Matthews, B. E.; Zhu, Z.; Wang, C.; Arey, B. W.; Xiao, J.; Liu, J.; Zhang, J.-G.; Xu, W. Joule 2019, 3, 1.
[48] Dong, X.; Lin, Y.; Li, P.; Ma, Y.; Huang, J.; Bin, D.; Wang, Y.; Qi, Y.; Xia, Y. Angew. Chem. Int. Ed. 2019, 58, 5623.
[49] Huang, J.; Sun, Y.; Wang, Y.; Zhang, Q. Acta Chim. Sinica 2017, 75, 173(in Chinese). (黄佳琦, 孙滢智, 王云飞, 张强, 化学学报, 2017, 75, 173.)
[50] Chen, K. F.; Xue, D. F. Chin. J. Chem. 2017, 35, 861.
[51] Li, W. F.; Ma, Q.; Zheng, Z. Z.; Zhang, Y. G. Acta Chim. Sinica 2017, 75, 225(in Chinese). (李宛飞, 马倩, 郑召召, 张跃钢, 化学学报, 2017, 75, 225.)
[52] He, F.; Wu, X.; Qian, J.; Cao, Y.; Yang, H.; Ai, X.; Xia, D. J. Mater. Chem. A 2018, 6, 23396.
[53] Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Chem. Rev. 2014, 114, 11751.
[54] Manthiram, A.; Fu, Y.; Su, Y.-S. Acc. Chem. Res. 2013, 46, 1125.
[55] Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Nature Energy 2017, 2, 17069.
[56] Li, X.; Banis, M.; Lushington, A.; Yang, X.; Sun, Q.; Zhao, Y.; Liu, C.; Li, Q.; Wang, B.; Xiao, W.; Wang, C.; Li, M.; Liang, J.; Li, R.; Hu, Y.; Goncharova, L.; Zhang, H.; Sham, T. K.; Sun, X. Nat. Commun. 2018, 9, 4509.
[57] Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969.
[58] Cuisinier, M.; Cabelguen, P. E.; Adams, B. D.; Garsuch, A.; Balasubramanian, M.; Nazar, L. F. Energy Environ. Sci. 2014, 7, 2967.
[59] Moon, H.; Mandai, T.; Tatara, R.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Seki, S.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2015, 119, 3957.
[60] Jiang, J.; Gao, D.-S.; Li, Z.-H.; Su, G.-Y.; Wang, C.-W.; Liu, L.; Ding, Y.-H. Chem. J. Chin. Univ. 2006, 27, 1319(in Chinese). (蒋晶, 高德淑, 李朝晖, 苏光耀, 王承位, 刘黎, 丁燕怀, 高等学校化学学报, 2006, 27, 1319.)
[61] Jing, J.; Guangyao, S. U. Battery 2005, 35, 474.
[62] Taige, M. A.; Hilbert, D.; Schubert, T. J. S. Zeitschrift für Physikalische Chemie 2012, 226, 129.
[63] Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009, 194, 601.
[64] Qiu, H.; Zhao, J.; Zhou, X.; Cui, G. Acta Chim. Sinica 2018, 76, 749(in Chinese). (邱华玉, 赵井文, 周新红, 崔光磊, 化学学报, 2018, 76, 749.)
[65] Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J.-W.; Ueno, K.; Seki, S.; Serizawa, N.; Watanabe, M. J. Electrochem. Soc. 2013, 160, A1304.
[66] Ueno, K.; Murai, J.; Ikeda, K.; Tsuzuki, S.; Tsuchiya, M.; Tatara, R.; Mandai, T.; Umebayashi, Y.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2015, 120, 15792.
[67] Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710.
[68] Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947.
[69] Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154(in Chinese). (向兴德, 卢艳莹, 陈军, 化学学报, 2017, 75, 154.)
[70] Zou, W.; Fan, C.; Li, J. Z. Chin. J. Chem. 2017, 35, 79.
[71] Qu, L. P.; Ren, T.; Wang, N.; Shi, Y. L.; Zhuang, Q. C. Acta Chim. Sinica 2019, 77, 634(in Chinese). (渠璐平, 任彤, 王宁, 史月丽, 庄全超, 化学学报, 2019, 77, 634.)
[72] Doi, T.; Shimizu, Y.; Hashinokuchi, M.; Inaba, M. J. Electrochem. Soc. 2017, 164, A6412.
文章导航

/