研究通讯

Ming-Phos/铜催化的亚甲胺叶立德与硝基烯烃的不对称[3+2]环加成反应

  • 张荣华 ,
  • 许冰 ,
  • 张展鸣 ,
  • 张俊良
展开
  • a 华东师范大学化学与分子工程学院 上海市绿色化学与化工过程绿色化重点实验室 上海 200062;
    b 复旦大学化学系 上海 200438

收稿日期: 2020-01-21

  网络出版日期: 2020-03-09

基金资助

项目受国家自然科学基金(Nos.21425205,21672067,21801078)、973计划(No.2015CB856600)和上海高等学校东方学者计划和中国博士后科学基金(Nos.2019M650071,2019M661418)资助.

Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes

  • Zhang Ronghua ,
  • Xu Bing ,
  • Zhang Zhanming ,
  • Zhang Junliang
Expand
  • a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062;
    b Department of Chemistry, Fudan University, Shanghai 200438

Received date: 2020-01-21

  Online published: 2020-03-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21425205, 21672067, 21801078), 973 Program (No. 2015CB856600), and the Program of Eastern Scholar at Shanghai Institutions of Higher Learning and the China Postdoctoral Science Foundation (Nos. 2019M650071, 2019M661418).

摘要

手性吡咯烷骨架是合成具有生物活性的化合物、天然产物、药物和催化剂的重要中间体,其高效的不对称合成方法是有机化学研究热点之一.该工作通过一类新型的Ming-Phos手性配体实现了铜催化的亚甲胺叶立德与硝基烯烃的不对称[3+2]环加成反应,以较好的非对映选择性和对映选择性合成了一系列手性吡咯烷类化合物(ee值高达98%,产率高达95%).该方法具有反应条件温和、操作简单、底物普适性广以及配体合成简单易制备等众多优点.

本文引用格式

张荣华 , 许冰 , 张展鸣 , 张俊良 . Ming-Phos/铜催化的亚甲胺叶立德与硝基烯烃的不对称[3+2]环加成反应[J]. 化学学报, 2020 , 78(3) : 245 -249 . DOI: 10.6023/A20010019

Abstract

Optically pure pyrrolidine ring systems are core structural motifs found in a range of bioactive compounds, natural products, pharmaceuticals and catalysts. The synthesis of optically pure pyrrolidine ring systems is no longer mysterious as a great number of studies concerning the catalytic asymmetric 1,3-dipolar cycloaddition of iminoesters have been reported. Overall, the transition-metal-catalyzed asymmetric 1,3-dipolar cycloaddition of iminoesters with electron-deficient alkenes is one of the most powerful and straightforward synthetic tools for the optically pure pyrrolidines. However, high diastereo-and enantioselectivities are requested simultaneously during the synthesis of chiral substituted pyrrolidine and it still remains a big challenge to develop an efficient way to achieve both of them. Recently, we developed a novel chiral sulfinamide mono-phosphine (Ming-Phos) which performed well in copper-catalyzed intermolecular cycloaddition of iminoesters with β-trifluoromethyl β,β-disubstituted enones or α-trifluoromethyl α,β-unsaturated esters. Encouraged by the satisfying results, herein we report the Ming-Phos/Cu-catalyzed asymmetric intermolecular[3+2] cycloaddition of azomethine ylides with nitroalkenes. To our delight, a new Ming-Phos M3 bearing a trifluoromethyl showed good performance in this type of inter-molecular cycloaddition with high diastereo-and enantioselectivities (up to 13:1 dr, 98% ee and 95% yield). High efficiency, high diastereo-and enantioselectivity, a novel ligand, an inexpensive copper catalyst, and good functional group tolerance make it worth to be considered as an efficient, reliable and atom-economic strategy for the synthesis of optically pyrrolidines. The general procedure is as following:the solution of M3 (5.5 mol%) and Cu(CH3CN)4BF4 (5 mol%) in methyl tert-butyl ether (MTBE, 6 mL) was stirred at room temperature for 2 h. After the reaction temperature was dropped to -30℃, azomethine ylides 2 (0.6 mmol), Cs2CO3 (0.15 mmol) and nitroalkene 1 (0.3 mmol) were added sequentially. After the nitroalkene 1 was consumed completely, the solvent was removed under reduced pressure. The crude product was analyzed with 1H NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel to afford the desired product.

参考文献

[1] For recent reviews and selected examples on the application of pyrrolidines in the natural products and biologically molecules, see:(a) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.; Tang, M. Synlett 2004, 2670.
(b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139.
(c) Enders, D.; Thiebes, C. Pure Appl. Chem. 2001, 73, 573.
(d) Narayan, R.; Potowski, M.; Jia, Z. J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res. 2014, 47, 1296.
(e) Kumar, I. RSC Adv. 2014, 4, 16397.
(f) Randjelovic, J.; Simic, M.; Tasic, G.; Husinec, S.; Savic, V. Curr. Org. Chem. 2014, 18, 1073.
(g) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodriguez-García, I. Chem. Rev. 2008, 108, 3174, and references therein.
[2] (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(b) Yu, J.; Shi, F.; Gong, L. Z. Acc. Chem. Res. 2011, 44, 1156.
(c) Han, M. Y.; Jia, J. Y.; Wang, W. Tetrahedron Lett. 2014, 55, 784.
(d) Zhang. R.; Xu, Q.; Shi, M. Acta Chim. Sinica 2012, 70, 1593. (张睿, 徐琴, 施敏, 化学学报, 2012, 70, 1593.)
(e) Wang, J.; Li, X.; Yuan, Q.; Ren, J.; Huang, J.; Zeng, B. Chin. J. Chem. 2012, 30, 2813.
(f) Wang, Q.; Chang, H.; Wei, W.; Liu, Q.; Gao, W.; Li, Y.; Li, X. Chin. J. Org. Chem. 2016, 36, 939. (王清宇, 常宏宏, 魏文珑, 刘强, 高文超, 李彦威, 李兴, 有机化学, 2016, 36, 939.)
(g) Gao, Y.; Xiao, Z.; Liu, L.; Huang, P. Chin. J. Org. Chem. 2017, 37, 1189. (高燕娇, 肖振华, 刘良先, 黄培强, 有机化学, 2017, 37, 1189.)
(h) Zhang, J.; Wu, Z.; Xie, F.; Zhang, W. Chin. J. Org. Chem. 2018, 38, 1319. (张金刚, 吴正兴, 谢芳, 张万斌, 有机化学, 2018, 38, 1319.)
(i) Zhao, L.; Zhou, S.; Tong, J.; Wang, J.; Liu, H. Chin. J. Org. Chem. 2018, 38, 1437. (赵亮, 周胜斌, 童军华, 王江, 柳红, 有机化学, 2018, 38, 1437.)
[3] For recent reviews about 1,3-dipolar cycloadditions of iminoesters, see:(a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.
(b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887.
(c) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Chem. Rev. 2008, 108, 3174.
(d) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132.
(e) Engels, B.; Christl, M. Angew. Chem., Int. Ed. 2009, 48, 7968.
(f) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.
(g) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703.
(h) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492.
(i) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660.
(j) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
(k) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
(l) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37, 1166.
(m) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
(n) Fang, X.; Wang, C.-J. Org. Biomol. Chem. 2018, 16, 2591.
[4] (a) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.
(b) Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174.
(c) Knöpfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Angew. Chem., Int. Ed. 2004, 43, 5971.
(d) Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X. J. Am. Chem. Soc. 2007, 129, 750.
(e) López-Pérez, A.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2009, 48, 340.
(f) Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am. Chem. Soc. 2011, 133, 20750.
(g) Yamashita, Y.; Imaizumi, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 4893.
(h) Xu, H.; Golz, C.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2016, 55, 7761.
(i) Pascual-Escudero, A.; de Cózar, A.; Cossío, F. P.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2016, 55, 15334.
(j) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394.
(k) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364.
(l) Wang, C.-J.; Liang, G.; Xue, Z. Y.; Gao, F. J. Am. Chem. Soc. 2008, 130, 17250.
(m) Nájera, C.; Retamosa, M. d. G.; Sansano, J. M. Angew. Chem., Int. Ed. 2008, 47, 6055.
(n) Yamashita, Y.; Guo, X.-X.; Takashita, R.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 3262.
(o) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.
(p) Potowski, M.; Schürmann, M.; Preut, H.; Antonchick, A. P.; Waldmann, H. Nat. Chem. Biol. 2012, 8, 428.
(q) Awata, A.; Arai, T. Angew. Chem., Int. Ed. 2014, 53, 10462.
(r) Narayan, R.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2013, 52, 12892.
(s) Antonchick, A. P.; Gerding-Reimers, C.; Catarinella, M.; Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2010, 2, 735.
(t) Liu, T.-L.; He, Z.-L.; Wang, C.-J. Chem. Commun. 2011, 47, 9600.
(u) Li, Q.; Huang, R.; Wang, C.-J. Acta Chim. Sinica 2014, 72, 830. (李清华, 黄蓉, 王春江, 化学学报, 2014, 72, 830.)
(v) Xu, S.; Zhang, Z. M.; Xu, B.; Liu, B.; Liu, Y.; Zhang, J. J. Am. Chem. Soc. 2018, 140, 2272.
(w) Xu, B.; Zhang, Z.-M.; Liu, B.; Xu, S.; Zhou, L. J.; Zhang, J. Chem. Commun. 2017, 53, 8152.
(x) Xu, S.; Liu, B.; Zhang, Z.-M.; Xu, B.; Zhang, J. Chin. J. Chem. 2018, 36, 421.
[5] Allway, P.; Grigg, R. Tetrahedron Lett. 1991, 32, 5817.
[6] Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.
[7] (a) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979.
(b) Arai, T.; Yokoyama, N.; Mishiro, A.; Sato, H. Angew. Chem., Int. Ed. 2010, 49, 7895.
(c) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W. Angew. Chem., Int. Ed. 2015, 54, 5255.
(d) Feng, B.; Chen, J.-R.; Yang, Y.-F.; Lu, B.; Xiao, W. J. Chem. Eur. J. 2018, 24, 1714.
[8] For applications of Ming-Phos in asymmetric catalysis, see:(a) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X. L.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 4350.
(b) Chen, M.; Zhang, Z.-M.; Yu, Z.; Qiu, H.; Ma, B.; Wu, H.-H.; Zhang, J. ACS Catal. 2015, 5, 7488.
(c) Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 6324.
(d) Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y.; Zhang, J. ACS Catal. 2017, 7, 210.
(e) Wang, Y.; Zhang, Z.-M.; Liu, F.; He, Y.; Zhang, J. Org. Lett. 2018, 20, 6403.
(f) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018.
(g) Wu, Y.; Xu, B.; Liu, B.; Zhang, Z. M.; Liu, Y. Org. Biomol. Chem. 2019, 17, 1395.
(h) Zhou, L.; Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang Z.-M.; Zhang, J. Angew. Chem., Int. Ed. 2020, 59, 2769.
(i) Zhou, L.; Xu, B.; Ji, D.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. DOI:10.1002/cjoc.202000034.
文章导航

/