研究论文

界面增强的CeO2/FeNi MOF高效析氧催化剂

  • 代迷迷 ,
  • 王健 ,
  • 李麟阁 ,
  • 王琪 ,
  • 刘美男 ,
  • 张跃钢
展开
  • a 上海科技大学 物质科学与技术学院 上海 201210;
    b 中国科学院 苏州纳米技术与纳米仿生研究所 苏州 215123;
    c 中国科学院 上海硅酸盐研究所 上海 200050;
    d 中国科学院大学 北京 100049;
    e 苏州纳米技术与纳米仿生研究所南昌研究院 南昌 330000;
    f 清华大学 物理系 北京 100084

收稿日期: 2020-01-16

  网络出版日期: 2020-04-07

基金资助

项目受国家自然科学基金(Nos.21433013,21303129)、江西省杰出青年基金(No.20192BCB23028)和江西省科技计划(No.20192BCD40017)资助.

High-performance Oxygen Evolution Catalyst Enabled by Interfacial Effect between CeO2 and FeNi Metal-organic Framework

  • Dai Mimi ,
  • Wang Jian ,
  • Li Linge ,
  • Wang Qi ,
  • Liu Meinan ,
  • Zhang Yuegang
Expand
  • a School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
    b Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
    c Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
    d University of Chinese Academy of Sciences, Beijing 100049, China;
    e Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang 330000, China;
    f Department of Physics, Tsinghua University, Beijing 100084, China

Received date: 2020-01-16

  Online published: 2020-04-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21433013, 21303129), Outstanding Youth Fund of Jiangxi Province (No. 20192BCB23028) and the Science and Technology Project of Jiangxi Province (No. 20192BCD40017).

摘要

在众多非贵金属基材料中,金属有机骨架(MOFs)因其高比表面积和丰富的金属活性中心而成为最有前景的氧气析出反应(OER)催化剂之一.但MOFs的本征催化活性、导电性和稳定性较差,从而影响其在OER电催化中的应用.本工作通过电沉积法在泡沫镍支撑的FeNi MOF纳米片表面引入5 nm的CeO2纳米团簇来提高MOFs的催化活性.CeO2纳米团簇与FeNi MOF纳米片之间的固-固界面相互作用以及CeO2纳米团簇的掺杂有效调控了MOF表面金属位点的电子结构,提高了金属位点的本征电催化活性;同时,CeO2团簇良好的导电性促进了FeNi MOF表面的电荷迁移,从而使CeO2/FeNi MOF的OER活性优于FeNi MOF.在1 mol·L-1 KOH溶液中CeO2/FeNi MOF达到50 mA·cm-2和100 mA·cm-2的电流密度所需要的过电位分别只有220 mV和233 mV,同时表现出快速的反应动力学和优异的稳定性.

本文引用格式

代迷迷 , 王健 , 李麟阁 , 王琪 , 刘美男 , 张跃钢 . 界面增强的CeO2/FeNi MOF高效析氧催化剂[J]. 化学学报, 2020 , 78(4) : 355 -362 . DOI: 10.6023/A20010017

Abstract

Oxygen evolution reaction (OER) is a crucial half reaction of electrochemical water splitting and metal-air batteries. But its sluggish four-electron reaction leads to a high overpotential. Current commercial OER catalysts are mainly noble metal-based materials, but their high cost restricts their broad application. Therefore, extensive efforts have been devoted to exploring low-cost and efficient OER catalysts. Nonprecious metal-based materials have been regarded as promising OER catalyst candidates, due to their abundancy on the earth, controllable morphologies and tunable chemical states. Among various nonprecious metal-based materials, metal-organic frameworks (MOFs) have attracted much attention, because of their large specific surface area and rich metal centers. However, their poor electrochemical activities, stabilities and conductivities severely affect their application in OER catalysis. To improve the activities of MOFs, several methods have been adopted, such as synthesizing ultrathin nanosheets, growing MOFs on nickel foam or carbon cloth, doping heteroatoms, and introducing synergistic interactions between two materials. In 1970, Wagner proposed a space-charge theory, which indicates that the carrier property can be tuned through adjusting interface. Inspired by this theory, constructing metal oxide-catalyst interface seems to be a promising strategy to improve activities of catalysts. CeO2 is a well-known cocatalyst due to its reversible Ce3+/Ce4+ redox. Previous works have demonstrated that OER performance can be effectively improved through introducing CeO2 since it can speed up the electron mobility and induce strong interaction between CeO2 and metal sites. In this work, an efficient OER catalyst was achieved through introducing CeO2 into FeNi MOF catalyst. FeNi MOF nanosheet arrays grown on nickel foam was firstly prepared via a solvothermal process. Then CeO2 nanoclusters (5 nm) were coated onto FeNi MOF surface by electrodeposition. A series of characterizations were employed to study the morphology, structure and surface electronic state information of the as-obtained CeO2/FeNi MOF. From X-ray photoelectron spectroscopic analysis, the doping of CeO2 clusters and the strong electronic interaction between CeO2 clusters and FeNi MOF induce the formation of Fe/Ni-O-Ce bonds and optimize the electronic structures of Fe/Ni sites, which will enhance OER activities. The OER performance tests confirm that CeO2/FeNi MOF indeed exhibits a superior OER activity than FeNi MOF alone. The hybrid catalyst delivers a higher mass activity (235.4 A·g-1) and a faster turnover frequency (0.065 s-1) than those of FeNi MOF (43.8 A·g-1, 0.018 s-1). Compared with FeNi MOF, CeO2/FeNi MOF also shows better OER kinetics, as evidenced by a decreased Tafel slope, a reduced charge transfer resistance. Besides, CeO2/FeNi MOF presents an outstanding stability (50 h, 50 mA·cm-2). All these features make our CeO2/FeNi MOF a potential catalyst in the future application. The interfacial strategy through introducing CeO2 to modulate Fe and Ni active sites may open a door for developing high-performance OER catalysts in future.

参考文献

[1] Song, F.; Ding, Y.; Zhao, C. Acta Chim. Sinica 2014, 72, 133(in Chinese). (宋芳源, 丁勇, 赵崇超, 化学学报, 2014, 72, 133.)
[2] Cheng, F.; Chen, J. Acta Chim. Sinica 2013, 71, 473(in Chinese). (程方益, 陈军, 化学学报, 2013, 71, 473.)
[3] Guo, Y.; Yao, Y.; Li, H.; He, L.; Zhu, Z.; Yang, Z.; Gong, L.; Liu, C.; Zhao, D. Acta Chim. Sinica 2017, 75, 903(in Chinese). (郭宇, 姚远, 李慧, 赫兰兰, 朱尊伟, 杨忠志, 宫利东, 刘翠, 赵东霞, 化学学报, 2017, 75, 903.)
[4] Zhou, P.; He, J.; Zou, Y.; Wang, Y.; Xie, C.; Chen, R.; Zang, S.; Wang, S. Sci. China Chem. 2019, 62, 1365.
[5] Huang, Y.; Li, M.; Yang, W.; Yu, Y.; Hao, S. Sci. China Mater. 2020, 63, 240.
[6] Wang, Y.; Wang, M.; Li, J.; Wei, Z. Acta Chim. Sinica 2019, 77, 84(in Chinese). (王艺霖, 王敏杰, 李静, 魏子栋, 化学学报, 2019, 77, 84.)
[7] Yang, H.; Wang, C.; Zhang, Y.; Wang, Q. Sci. China Mater. 2019, 62, 681.
[8] Xiong, X.; Cai, Z.; Zhou, D.; Zhang, G.; Zhang, Q.; Jia, Y.; Duan, X.; Xie, Q.; Lai, S.; Xie, T.; Li, Y.; Sun, X.; Duan, X. Sci. China Mater. 2018, 61, 939.
[9] Li, P.; Zhao, X.; Duan, X.; Li, Y.; Kuang, Y.; Sun, X. Sci. China Mater. 2020, 63, 356.
[10] Senthil Raja, D.; Lin, H.-W.; Lu, S.-Y. Nano Energy 2019, 57, 1.
[11] Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. Adv. Energy Mater. 2018, 8, 1800584.
[12] Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113(in Chinese). (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[13] Rui, K.; Zhao, G.; Chen, Y.; Lin, Y.; Zhou, Q.; Chen, J.; Zhu, J.; Sun, W.; Huang, W.; Dou, S. X. Adv. Funct. Mater. 2018, 28, 1801554.
[14] Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; Lv, J.; Wang, J.; Zhang, J.; Khattak, A. M.; Khan, N. A.; Wei, Z.; Zhang, J.; Liu, S.; Zhao, H.; Tang, Z. Nat. Energy 2016, 1, 16184.
[15] Raja, D. S.; Chuah, X.-F.; Lu, S.-Y. Adv. Energy Mater. 2018, 8, 1801065.
[16] Wagner, C. J. Phys. Chem. Solids 1972, 33, 1051.
[17] Liu, Z.; Li, N.; Zhao, H.; Zhang, Y.; Huang, Y.; Yin, Z.; Du, Y. Chem. Sci. 2017, 8, 3211.
[18] Zhao, D.; Pi, Y.; Shao, Q.; Feng, Y.; Zhang, Y.; Huang, X. ACS Nano 2018, 12, 6245.
[19] Liu, Y.; Ma, C.; Zhang, Q.; Wang, W.; Pan, P.; Gu, L.; Xu, D.; Bao, J.; Dai, Z. Adv. Mater. 2019, 31, 1900062.
[20] He, X.; Yi, X.; Yin, F.; Chen, B.; Li, G.; Yin, H. J. Mater. Chem. A 2019, 7, 6753.
[21] Kim, J.-H.; Shin, K.; Kawashima, K.; Youn, D. H.; Lin, J.; Hong, T. E.; Liu, Y.; Wygant, B. R.; Wang, J.; Henkelman, G.; Mullins, C. B. ACS Catal. 2018, 8, 4257.
[22] Gao, W.; Xia, Z.; Cao, F.; Ho, J. C.; Jiang, Z.; Qu, Y. Adv. Funct. Mater. 2018, 28, 1706056.
[23] Yu, J.; Cao, Q.; Li, Y.; Long, X.; Yang, S.; Clark, J. K.; Nakabayashi, M.; Shibata, N.; Delaunay, J.-J. ACS Catal. 2019, 9, 1605.
[24] Wang, B.; Xi, P.; Shan, C.; Chen, H.; Xu, H.; Iqbal, K.; Liu, W.; Tang, Y. Adv. Mater. Interfaces 2017, 4, 1700272.
[25] Long, X.; Lin, H.; Zhou, D.; An, Y.; Yang, S. ACS Energy Lett. 2018, 3, 290.
[26] Liu, Q.; Wang, L.; Liu, X.; Yu, P.; Tian, C.; Fu, H. Sci. China Mater. 2019, 62, 624.
[27] Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S. Adv. Mater. 2017, 29, 1701546.
[28] Cai, Z.; Bi, Y.; Hu, E.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X.; Kuang, Y.; Li, Y.; Yang, X.-Q.; Wang, H.; Sun, X. Adv. Energy Mater. 2017, 1701694.
[29] Saito, M.; Roberts, C. A.; Ling, C. J. Phys. Chem. C 2015, 119, 17202.
[30] Gao, Z. W.; Ma, T.; Chen, X. M.; Liu, H.; Cui, L.; Qiao, S. Z.; Yang, J.; Du, X. W. Small 2018, 14, 1800195.
[31] Luo, P.; Sun, F.; Deng, J.; Xu, H.; Zhang, H.; Wang, Y. Acta Phys. -Chim. Sin. 2018, 34, 1397.
[32] Zhang, B.; Jiang, K.; Wang, H.; Hu, S. Nano Lett. 2019, 19, 530.
[33] Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. J. Am. Chem. Soc. 2015, 137, 3638.
[34] Baek, M.; Kim, G. W.; Park, T.; Yong, K. Small 2019, 1905501.
[35] Yang, L.; Zhu, G.; Wen, H.; Guan, X.; Sun, X.; Feng, H.; Tian, W.; Zheng, D.; Cheng, X.; Yao, Y. J. Mater. Chem. A 2019, 7, 8771.
[36] Cao, C.; Ma, D. D.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Adv. Funct. Mater. 2019, 29, 1807418.
[37] Li, W.; Lv, J.; Li, Q.; Xie, J.; Ogiwara, N.; Huang, Y.; Jiang, H.; Kitagawa, B.; Xu, G.; Wang, Y. J. Mater. Chem. A 2019, 7, 10431.
[38] Zhang, C.; Chen, Z.; Lian, Y.; Chen, Y.; Li, Q.; Gu, Y.; Lu, Y.; Deng, Z.; Peng, Y. Acta Phys.-Chim. Sin. 2019, 35, 1404(in Chinese). (张楚风, 陈哲伟, 连跃彬, 陈宇杰, 李沁, 顾银冬, 陆永涛, 邓昭, 彭杨, 物理化学学报, 2019, 35, 1404.)
文章导航

/