综述

金属有机框架分离纯化C4~C6碳氢化合物的研究

  • 郭振彬 ,
  • 张媛媛 ,
  • 冯霄
展开
  • a 北京理工大学化学与化工学院 北京 100081;
    b 北京理工大学前沿交叉科学研究院 北京 100081
郭振彬,北京理工大学化学与化工学院,2017级在读硕士研究生(化学专业),本科毕业于青岛科技大学(应用化学专业),现主要从事晶态多孔材料的合成与应用研究;张媛媛,北京理工大学前沿交叉科学研究院,预聘助理教授.2013年~2019年在北京理工大学化学与化工学院获得博士学位,2017年~2018年在美国西北大学化学系访问学习(联合培养博士),2019年就职于北京理工大学前沿交叉科学研究院.主要从事金属有机框架(MOF)、共价有机框架(COF)等功能多孔材料的可控制备和柔性加工,及其在分离、催化、智能响应等领域的应用研究;冯霄,北京理工大学博士生导师,化学与化工学院教授,国家自然科学基金优秀青年科学基金获得者.分别于2008年和2013年于北京理工大学材料学院取得本科与博士学位,攻读博士期间以联合培养博士研究生身份留学于日本国家自然科学研究机构——分子科学研究所.2013年就职于北京理工大学化学与化工学院.主要从事关于共价有机框架材料等晶态多孔材料的构效关系研究以及膜分离相关领域应用研究.

收稿日期: 2020-03-21

  网络出版日期: 2020-04-21

基金资助

项目受国家自然科学基金(21922502,21674012)资助.

Separation and Purification of C4~C6 Hydrocarbons Using Metal-organic Frameworks

  • Guo Zhenbin ,
  • Zhang Yuanyuan ,
  • Feng Xiao
Expand
  • a School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081;
    b Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081

Received date: 2020-03-21

  Online published: 2020-04-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21922502, 21674012).

摘要

C4~C6碳氢化合物作为重要的化工原料和能源,在传统的石化工业生产中,主要通过精馏进行分离提纯,此过程能耗高、设备费用昂贵、经济效益低.利用固体吸附剂进行吸附式分离,不仅可以降低能源成本,而且可以提高效率.金属有机框架(metal-organic frameworks,MOFs)作为一类由金属离子或团簇和有机单体组装而成的晶态多孔材料,具有高孔隙率、规整开放的孔道、丰富的官能团和多样的结构,在气体储存与分离中有着良好的应用前景.介绍了C4~C6碳氢化合物分离的重要性,并从MOFs分离机制出发,概述了目前MOF材料用于分离纯化C4~C6碳氢化合物的分离机理和研究进展,为开发新型具有良好分离性能的MOF材料提供研究思路.

本文引用格式

郭振彬 , 张媛媛 , 冯霄 . 金属有机框架分离纯化C4~C6碳氢化合物的研究[J]. 化学学报, 2020 , 78(5) : 397 -406 . DOI: 10.6023/A20030081

Abstract

As important chemical raw materials and energy source, C4~C6 hydrocarbons are mainly used to produce polymer rubber, plastics and high-quality gasoline, which requires high purity of the raw materials. For example, the purity requirement in 1,3-butadiene polymerization reactor is higher than 99.5%. When producing butyl rubber, tert-butylamine, pivalic acid, etc., the purity of isobutylene should surpass 99%. In the traditional petrochemical industry, C4~C6 hydrocarbons are mostly separated and purified through distillation, yet suffering from large energy consumption, high equipment cost and poor economic benefits. Adsorption separation with solid adsorbents can not only reduce energy cost and environmental footprints, but also improve separation efficiency. Metal-organic frameworks (MOFs) are a class of crystalline porous materials assembled from metal ions or clusters and organic linkers. Compared with zeolite, activated carbon and silica gel, MOFs feature high porosity, well-defined open channels, rich functional groups and diverse structures, showing great potentials in gas storage and separation, sensing, catalysis, photoelectric devices, drug release and delivery. Up to now, there have been many reports on separation and purification of C4~C6 hydrocarbons using MOFs by different mechanisms. Specifically, highly selective separation can be achieved by precisely adjusting the size and shape of the MOF channels to match the size of the target molecule. Besides, selecting MOFs with specific functional groups, open metal sites or flexible skeletons to regulate the interactions between the gas molecules and backbone, can also achieve efficient separation. This review introduced the importance of C4~C6 hydrocarbons separation and summarized the current research progress of using MOFs to separate and purify C4~C6 hydrocarbons. In addition, we also summed up the challenges of using MOFs as industrial adsorbents and pointed out the possible research directions in the future, which may provide ideas for designing new MOFs with high performance for crucial separation processes.

参考文献

[1] Bender, M. ChemBioEng Rev. 2014, 1, 136.
[2] Gehre, M.; Guo, Z.; Rothenberg, G.; Tanase, S. ChemSusChem 2017, 10, 3947.
[3] Ed.:Myers, R. A. Handbook of Petroleum Refining Processes, McGraw-Hill, New York, 2004.
[4] Greensfelder, B. S.; Voge, H. H. Ind. Eng. Chem. Res. 1945, 37, 514.
[5] Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.

[6] Tijsebaert, B.; Varszegi, C.; Gies, H.; Xiao, F. S.; Bao, X.; Tatsumi, T.; Muller, U.; De Vos, D. Chem. Commun. 2008, 2480.
[7] (a) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Science 2005, 310, 1166.
(b) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334.
(c) Ferey, G. Chem. Soc. Rev. 2008, 37, 191.
(d) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.
(e) Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 1391.
(f) Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T.
J. Am. Chem. Soc. 2012, 134, 15016.
[8] (a) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724.
(b) Makal, T. A.; Li, J. R.; Lu, W.; Zhou, H. C. Chem. Soc. Rev. 2012, 41, 7761.
(c) Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.
(d) Zhao, X.; Wang, Y.; Li, D. S.; Bu, X.; Feng, P. Adv. Mater. 2018, 30, 1705189.
(e) Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Chem. Soc. Rev. 2017, 46, 3402.
(f) Van de Voorde, B.; Denayer, J.; De Vos, D. Chem. Soc. Rev. 2014, 43, 5766.
(g) Holst, J. R.; Trewin, A.; Cooper, A. I. Nat. Chem. 2010, 2, 915.
(h) Farha, O. K.; Yazaydin, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944.
(i) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
(j) Liu, Y.; Xia, X.-X.; Tan, Y.-Y.; Li, S. Acta Chim. Sinica 2020, 78, 250(in Chinese). (刘洋, 夏潇潇, 谭媛元, 李松, 化学学报, 2020, 78, 250.)
(k) Chen, Z.-Y.; Liu, J.-W.; Cui, H.; Zhang, L.; Su, C.-Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
(l) Bian, L.; Li, W.; Wei, Z.-Z.; Liu, X.-W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese). (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
(m) Yang, W.-Y.; Liang, H.; Qiao, Z.-W. Acta Chim. Sinica 2018, 76, 785(in Chinese). (杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.)
[9] (a) Yi, F.-Y.; Chen, D.; Wu, M.-K.; Han, L.; Jiang, H. L. ChemPlusChem 2016, 81, 675.
(b) Kempahanumakkagari, S.; Kumar, V.; Samaddar, P.; Kumar, P.; Ramakrishnappa, T.; Kim, K.-H. Biotechnol. Adv. 2018, 36, 467.
(c) Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Chem. Soc. Rev. 2018, 47, 4710.
(d) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
(e) Hu, Z.; Deibert, B. J.; Li, J. Chem. Soc. Rev. 2014, 43, 5815.
(f) Sun, Y.-H.; Qi, Y.-X.; Shen, Y.; Jing, C.-J.; Chen, X.-X.; Wang, X.-X. Acta Chim. Sinica 2020, 78, 147(in Chinese). (孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78, 147.)
(g) Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, Z.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese). (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
(h) Shi, Y.-X.; Zhang, W.-H.; Abrahams, B. F.; Braunstein, P.; Lang, J.-P. Angew. Chem., Int. Ed. 2019, 58, 9453.
[10] (a) Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Adv. Mater. 2018, 30, 1703663.
(b) Cui, W.-G.; Zhang, G.-Y.; Hu, T.-L.; Bu, X.-H. Coord. Chem. Rev. 2019, 387, 79.
(c) Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. Nat. Mater. 2018, 17, 301.
(d) Lv, X. L.; Wang, K.; Wang, B.; Su, J.; Zou, X.; Xie, Y.; Li, J. R.; Zhou, H. C. J. Am. Chem. Soc. 2017, 139, 211.
(e) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
(f) Wu, Z.-M.; Shi, Y.; Li, C.-Y.; Niu, D.-Y.; Chu, Q.; Xiong, W.; Li, X.-Y. Acta Chim. Sinica 2019, 77, 758(in Chinese). (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
(g) Xu, H.; Zhang, M.-Y.; Huang, X.; Shi, D.-B. Chin. J. Org. Chem. 2018, 38, 832(in Chinese). (徐缓, 张茂元, 黄香, 史大斌, 有机化学, 2018, 38, 832.)
(h) Guo, X.-L.; Chen, X.; Su, D.-S.; Liang, C.-H. Acta Chim. Sinica 2018, 76, 22(in Chinese). (郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.)
(i) Huang, G.; Chen, Y.-Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113(in Chinese). (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
(j) Jiao, L.; Jiang, H. L. Chem 2019, 5, 786.
(k) Xiao, J.-D.; Jiang, H. L. Acc. Chem. Res. 2019, 52, 356.
(l) Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Angew. Chem., Int. Ed. 2019, 58, 7051.
(m) Hu, F.-L.; Mi, Y.; Zhu, C.; Abrahams, B. F.; Braunstein, P.; Lang, J. P. Angew. Chem., Int. Ed. 2018, 57, 12696.
[11] (a) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.
(b) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
(c) Giménez, M.-M.; Hidalgo, T.; Serre, C.; Horcajada, P. Coord. Chem. Rev. 2016, 307, 342.
(d) Zeng, J.-Y.; Wang, X.-S.; Zhang, X.-Z.; Zhuo, R.-X. Acta Chim. Sinica 2019, 77, 1156(in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[12] (a) Cui, W. G.; Hu, T. L.; Bu, X. H. Adv. Mater. 2019, 32, 1806445.
(b) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.
[13] Sircar, S.; Mohr, R.; Ristic, C.; Rao, M. B. J. Phys. Chem. B 1999, 103, 6539.
[14] Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Langmuir 2008, 24, 8634.
[15] Schoonheydt, R. A.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2009, 11, 2794.
[16] Barnett, B. R.; Parker, S. T.; Paley, M. V.; Gonzalez, M. I.; Biggins, N.; Oktawiec, J.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 18325.
[17] Jiao, J.; Liu, H.; Bai, D.; He, Y. Inorg. Chem. 2016, 55, 3974.

[18] Kim, H.; Park, J.; Jung, Y. Phys. Chem. Chem. Phys. 2013, 15, 19644.
[19] Jiao, J.; Liu, H.; Bai, D.; He, Y. Inorg. Chem. 2016, 55, 3974.
[20] Zhang, Z.; Yang, Q.; Cui, X.; Yang, L.; Bao, Z.; Ren, Q.; Xing, H. Angew. Chem., Int. Ed. 2017, 56, 16282.
[21] Cui, J.; Zhang, Z.; Tan, B.; Zhang, Y.; Wang, P.; Cui, X.; Xing, H. Chem. Asian. J. 2019, 14, 3572.
[22] Lange, M.; Kobalz, M.; Bergmann, J.; Lässig, D.; Lincke, J.; Möllmer, J.; Möller, A.; Hofmann, J.; Krautscheid, H.; Staudt, R.; Gläser, R. J. Mater. Chem. A 2014, 2, 8075.
[23] Kishida, K.; Okumura, Y.; Watanabe, Y.; Mukoyoshi, M.; Bracco, S.; Comotti, A.; Sozzani, P.; Horike, S.; Kitagawa, S. Angew. Chem., Int. Ed. 2016, 55, 13784.

[24] Liao, P.-Q.; Huang, N.-Y.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. Science 2017, 356, 1193.
[25] Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390.
[26] Herm, Z. R.; Wiers, B. M.; Mason, J. A.; Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Science 2013, 340, 960.
[27] Mendes, P. A. P.; Horcajada, P.; Rives, S.; Ren, H.; Rodrigues, A. E.; Devic, T.; Magnier, E.; Trens, P.; Jobic, H.; Ollivier, J.; Maurin, G.; Serre, C.; Silva, J. A. C. Adv. Funct. Mater. 2014, 24, 7666.
[28] Assen, A. H.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Xue, D. X.; Jiang, H.; Eddaoudi, M. Angew. Chem., Int. Ed. 2015, 54, 14353.
[29] Wang, H.; Dong, X.; Lin, J.; Teat, S. J.; Jensen, S.; Cure, J.; Alexandrov, E. V.; Xia, Q.; Tan, K.; Wang, Q.; Olson, D. H.; Proserpio, D. M.; Chabal, Y. J.; Thonhauser, T.; Sun, J.; Han, Y.; Li, J. Nat. Commun. 2018, 9, 1745.
[30] Wang, H.; Dong, X.; Velasco, E.; Olson, D. H.; Han, Y.; Li, J. Energy Environ. Sci. 2018, 11, 1226.
[31] Ding, N.; Li, H.-W.; Wang, Q.-Y.; Wang, S.; Ma, L.; Zhou, J.-W.; Wang, B. J. Am. Chem. Soc. 2016, 138, 10100.
文章导航

/