综述

叠层结构的有机太阳能电池研究进展

  • 王文璇 ,
  • 王建邱 ,
  • 郑众 ,
  • 侯剑辉
展开
  • a 中国科学院化学研究所 北京 100190;
    b 中国科学院大学 北京 100049
王文璇,南开大学化学学院2016级本科生,于中国科学院化学研究所侯剑辉研究员课题组开展本科毕业设计工作,主要的研究兴趣为具有叠层结构的有机太阳能电池;王建邱,苏州大学与中国科学院化学研究所联合培养博士研究生,主要从事有机太阳能电池的制备与性能研究;郑众,2016年于中国科学院化学研究所高分子物理与化学专业取得理学博士学位.2016年至2019年期间,于东京大学、国家纳米科学中心从事科研工作并晋升副研究员.自2019年7月加入中国科学院化学研究所侯剑辉研究员课题组开展博士后研究.研究方向包括有机光伏器件关键参数解析及过程调制、大面积有机光伏器件性能优化;侯剑辉,博士、研究员、博士生导师、北京科技大学兼职教授.2006年于中国科学院化学研究所取得博士学位.2006年至2008年于美国加州大学洛杉矶分校从事博士后工作.2008年至2010年任美国朔纶公司高级研发主管.2010年于中国科学院化学研究所任研究员.主要研究方向为有机光伏关键材料设计与合成、光伏过程精细解析及有机光伏产业开发.

收稿日期: 2020-02-13

  网络出版日期: 2020-04-26

基金资助

项目受国家自然科学基金(Nos.51703041,91333204,91633301,51673201)资助.

Research Progress of Tandem Organic Solar Cells

  • Wang Wenxuan ,
  • Wang Jianqiu ,
  • Zheng Zhong ,
  • Hou Jianhui
Expand
  • a Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-02-13

  Online published: 2020-04-26

Supported by

Project supported by the National Natural Science Foundation of China (NSFC) (Nos. 51703041, 91333204, 91633301, 51673201).

摘要

有机太阳能电池在近年来发展十分迅速.其中,叠层器件结构的出现,有利于拓展太阳光响应范围,减少过热激子引起的能量损耗,为改善器件性能提供了可能.有机光伏领域内,叠层器件光伏效率的提升源自于所使用材料结构的改善以及器件制备工艺的发展.因此,本综述着眼于叠层器件中使用的材料、中间层结构、器件构型构筑、性能表征及应用领域等方面,系统总结了近年来领域内的代表性成果,并针对未来高性能叠层器件对材料和结构的要求做出了展望.

本文引用格式

王文璇 , 王建邱 , 郑众 , 侯剑辉 . 叠层结构的有机太阳能电池研究进展[J]. 化学学报, 2020 , 78(5) : 382 -396 . DOI: 10.6023/A20020032

Abstract

Organic solar cells have been developing quite rapidly in the past two decades. Tang fabricated the first organic solar cell with planar heterojunction in 1986, while the power conversion efficiency (PCE) was only 1%. The PCE of single-junction organic solar cell has increased to over 17% in 2019. However, the single-junction solar cells are limited in performance by the severe energy loss. Tandem organic solar cells that use an interconnecting layer connecting two sub-cells provide the possibility of optimizing the devices performance. The two different active layers of sub-cells have non-overlapping light absorption scales, which make the light utilized more adequately. Therefore, the tandem architecture of devices can extend the light absorption within the solar spectrum and effectively reduce energy loss resulting from thermalization loss and transmission loss. According to Shockley and Queisser's calculation, the limitation of the PCE of a tandem solar cell is 42%, which is higher than 33.8% of a single-junction solar cell. In organic photovoltaics field, the developments of the tandem solar cells benefit from the optimization of active layers, interconnecting layers and construction methods. These achievements have resulted in higher PCEs and the devices approaching practical application. At present, the highest PCE of tandem organic solar cell is 17.3% obtained by Chen's group in 2018, but it is still far from the PCE limitation. According to Kirchhoff's law, the open-circuit voltage (VOC) in series tandem cells is theoretically equal to the sum of the VOCs of sub-cells, and the short-circuit current (JSC) in parallel cells is equal to the sum of the JSCs of sub-cells. Hence, the series tandem solar cells still face with the challenge of the unmatched JSCs and the complexed processing methods. Here, this review mainly focuses on the materials used in tandem solar cells, the structure of the interconnecting layers, the processing methods, the measurement methods and the applications. The critical achievements on tandem organic solar cells in recent years and the progress of larger scale, flexible tandem devices are summarized in this review. It also presents the outlooks of the high performance tandem solar cells based on the material and structure requirements.

参考文献

[1] Upama, M. B.; Mahmud, M. A.; Conibeer, G.; Uddin, A. Solar RRL 2020, 4, 1900342.
[2] Inganäs, O. Adv. Mater. 2018, 30, 1800388.
[3] Zhang, X.; Tang, Y.; Yang, K.; Chen, P.; Guo, X. ChemElectroChem 2019, 6, 5547.
[4] Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[5] Di Carlo Rasi, D.; Janssen, R. A. J. Adv. Mater. 2019, 31, e1806499.
[6] Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C. J. Energy Environ. Sci. 2009, 2, 347.
[7] Vos, A. D. J. Phys. D:Appl. Phys. 1980, 13, 839.
[8] Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510.
[9] Sista, S.; Hong, Z.; Chen, L.-M.; Yang, Y. Energy Environ. Sci. 2011, 4, 1606.
[10] Yip, H.-L.; Jen, A. K. Y. Energy Environ. Sci. 2012, 5, 5994.
[11] Yuan, Y.; Huang, J.; Li, G. Green 2011, 1, 65.
[12] Hadipour, A.; Boer, B. d.; Wildeman, J.; Kooistra, F. B.; Hummelen, J. C.; Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J.; Blom, P. W. M. Adv. Funct. Mater. 2006, 16, 1897.
[13] Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222.
[14] Meng, L.; Ding, L.; Xia, R.; Cao, Y.; Chen, Y.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Yip, H.-L. Science 2018, 361, 1094.
[15] Lu, S.; Lin, H.; Zhang, S.; Hou, J.; Choy, W. C. H. Adv. Energy Mater. 2017, 7, 1701164.
[16] Huang, F.; Wu, H.; Wang, D.; Yang, W.; Cao, Y. Chem. Mater. 2004, 16, 708.
[17] Chen, F. X.; Xu, J. Q.; Liu, Z. X.; Chen, M.; Xia, R.; Yang, Y.; Lau, T. K.; Zhang, Y.; Lu, X.; Yip, H. L.; Jen, A. K.; Chen, H.; Li, C. Z. Adv. Mater. 2018, 30, e1803769.
[18] Mai, C. K.; Zhou, H.; Zhang, Y.; Henson, Z. B.; Nguyen, T. Q.; Heeger, A. J.; Bazan, G. C. Angew. Chem., Int. Ed. 2013, 52, 12874.
[19] Zhou, H.; Zhang, Y.; Mai, C. K.; Collins, S. D.; Bazan, G. C.; Nguyen, T. Q.; Heeger, A. J. Adv. Mater. 2015, 27, 1767.
[20] Cui, Y.; Yao, H.; Gao, B.; Qin, Y.; Zhang, S.; Yang, B.; He, C.; Xu, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7302.
[21] Mohd Yusoff, A. R. b.; Lee, S. J.; Kim, H. P.; Shneider, F. K.; da Silva, W. J.; Jang, J. Adv. Funct. Mater. 2014, 24, 2240.
[22] Kim, J.-H.; Shin, S. A.; Park, J. B.; Song, C. E.; Shin, W. S.; Yang, H.; Li, Y.; Hwang, D.-H. Macromolecules 2014, 47, 1613.
[23] Qin, Y.; Chen, Y.; Cui, Y.; Zhang, S.; Yao, H.; Huang, J.; Li, W.; Zheng, Z.; Hou, J. Adv. Mater. 2017, 29, 1606340.
[24] Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q. Energy Environ. Sci. 2010, 3, 867.
[25] Song, S.; Kranthiraja, K.; Heo, J.; Kim, T.; Walker, B.; Jin, S.-H.; Kim, J. Y. Adv. Energy Mater. 2017, 7, 1700782.
[26] Zhang, Y.; Kan, B.; Sun, Y.; Wang, Y.; Xia, R.; Ke, X.; Yi, Y. Q.; Li, C.; Yip, H. L.; Wan, X.; Cao, Y.; Chen, Y. Adv. Mater. 2018, 30, e1707508.
[27] Mohd Yusoff, A. R. b.; Kim, D.; Schneider, F. K.; da Silva, W. J.; Jang, J. Energy Environ. Sci. 2015, 8, 1523.
[28] You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.
[29] Hofle, S.; Schienle, A.; Bernhard, C.; Bruns, M.; Lemmer, U.; Colsmann, A. Adv. Mater. 2014, 26, 5155.
[30] Qiu, M.; Zhu, D.; Bao, X.; Wang, J.; Wang, X.; Yang, R. J. Mater. Chem. A 2016, 4, 894.
[31] Li, X.; Zhang, W.; Wu, Y.; Min, C.; Fang, J. ACS Appl. Mater. Interfaces 2013, 5, 8823.
[32] Guo, X.; Xie, H. J.; Zheng, J. W.; Xu, H.; Wang, Q. K.; Li, Y. Q.; Lee, S. T.; Tang, J. X. Nanoscale 2015, 7, 867.
[33] Tan, Z. a.; Li, L.; Wang, F.; Xu, Q.; Li, S.; Sun, G.; Tu, X.; Hou, X.; Hou, J.; Li, Y. Adv. Energy Mater. 2014, 4, 1300884.
[34] Park, S. H.; Shin, I.; Kim, K. H.; Street, R.; Roy, A.; Heeger, A. J. Adv. Mater. 2015, 27, 298.
[35] Zhao, W.; Ye, L.; Zhang, S.; Fan, B.; Sun, M.; Hou, J. Sci. Rep. 2014, 4, 6570.
[36] da Silva, W. J.; Schneider, F. K.; Yusoff, A. R.; Jang, J. Sci. Rep. 2015, 5, 18090.
[37] Liu, J.; Xue, Y.; Gao, Y.; Yu, D.; Durstock, M.; Dai, L. Adv. Mater. 2012, 24, 2228.
[38] Chen, Y.; Lin, W. C.; Liu, J.; Dai, L. Nano Lett. 2014, 14, 1467.
[39] Liu, J.; Kim, G. H.; Xue, Y.; Kim, J. Y.; Baek, J. B.; Durstock, M.; Dai, L. Adv. Mater. 2014, 26, 786.
[40] Vasilopoulou, M.; Polydorou, E.; Douvas, A. M.; Palilis, L. C.; Kennou, S.; Argitis, P. Energy Environ. Sci. 2015, 8, 2448.
[41] Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H.-L.; Peng, X.; Cao, Y.; Chen, Y. Nature Photonics 2016, 11, 85.
[42] Xu, B.; Zheng, Z.; Zhao, K.; Hou, J. Adv. Mater. 2016, 28, 434.
[43] Cui, Y.; Xu, B.; Yang, B.; Yao, H.; Li, S.; Hou, J. Macromolecules 2016, 49, 8126.
[44] Lu, S.; Guan, X.; Li, X.; Sha, W. E. I.; Xie, F.; Liu, H.; Wang, J.; Huang, F.; Choy, W. C. H. Adv. Energy Mater. 2015, 5, 1500631.
[45] Beliatis, M. J.; Gandhi, K. K.; Rozanski, L. J.; Rhodes, R.; McCafferty, L.; Alenezi, M. R.; Alshammari, A. S.; Mills, C. A.; Jayawardena, K. D.; Henley, S. J.; Silva, S. R. Adv. Mater. 2014, 26, 2078.
[46] Kim, H. P.; Yusoff, A. R. b. M.; Kim, H. M.; Lee, H. J.; Seo, G. J.; Jang, J. Nanoscale Res. Lett. 2014, 9, 150.
[47] Tan, Z.; Li, S.; Wang, F.; Qian, D.; Lin, J.; Hou, J.; Li, Y. Sci. Rep. 2014, 4, 4691.
[48] Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. Nat. Energy 2018, 3, 422.
[49] Zuo, L.; Chang, C.-Y.; Chueh, C.-C.; Zhang, S.; Li, H.; Jen, A. K. Y.; Chen, H. Energy Environ. Sci. 2015, 8, 1712.
[50] Wang, Z.; Li, Z.; Xu, X.; Li, Y.; Li, K.; Peng, Q. Adv. Funct. Mater. 2016, 26, 4643.
[51] Zhang, Z.-G.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Energy Environ. Sci. 2014, 7, 1966.
[52] Maennig, B.; Drechsel, J.; Gebeyehu, D.; Simon, P.; Kozlowski, F.; Werner, A.; Li, F.; Grundmann, S.; Sonntag, S.; Koch, M.; Leo, K.; Pfeiffer, M.; Hoppe, H.; Meissner, D.; Sariciftci, N. S.; Riedel, I.; Dyakonov, V.; Parisi, J. Appl. Phys. A 2004, 79, 1.
[53] Martínez-Otero, A.; Liu, Q.; Mantilla-Perez, P.; Bajo, M. M.; Martorell, J. J. Mater. Chem. A 2015, 3, 10681.
[54] Adams, J.; Spyropoulos, G. D.; Salvador, M.; Li, N.; Strohm, S.; Lucera, L.; Langner, S.; Machui, F.; Zhang, H.; Ameri, T.; Voigt, M. M.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2015, 8, 169.
[55] Chang, S.-Y.; Lin, Y.-C.; Sun, P.; Hsieh, Y.-T.; Meng, L.; Bae, S.-H.; Su, Y.-W.; Huang, W.; Zhu, C.; Li, G.; Wei, K.-H.; Yang, Y. Solar RRL 2017, 1, 1700139.
[56] Kang, R.; Park, S.; Jung, Y. K.; Lim, D. C.; Cha, M. J.; Seo, J. H.; Cho, S. Adv. Energy Mater. 2018, 8, 1702165.
[57] Gilot, J.; Wienk, M. M.; Janssen, R. A. J. Appl. Phys. Lett. 2007, 90, 143512.
[58] Gao, Y.; Le Corre, V. M.; Gaitis, A.; Neophytou, M.; Hamid, M. A.; Takanabe, K.; Beaujuge, P. M. Adv. Mater. 2016, 28, 3366.
[59] Sista, S.; Park, M. H.; Hong, Z.; Wu, Y.; Hou, J.; Kwan, W. L.; Li, G.; Yang, Y. Adv. Mater. 2010, 22, 380.
[60] Sakai, J.; Kawano, K.; Yamanari, T.; Taima, T.; Yoshida, Y.; Fujii, A.; Ozaki, M. Sol. Energy Meter. Sol. Cells 2010, 94, 376.
[61] Tan, H.; Furlan, A.; Li, W.; Arapov, K.; Santbergen, R.; Wienk, M. M.; Zeman, M.; Smets, A. H.; Janssen, R. A. Adv. Mater. 2016, 28, 2170.
[62] Liu, Y.; Chen, C. C.; Hong, Z.; Gao, J.; Yang, Y. M.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Sci. Rep. 2013, 3, 3356.
[63] Zuo, L.; Chang, C.-Y.; Chueh, C.-C.; Xu, Y.; Chen, H.; Jen, A. K.-Y. J. Mater. Chem. A 2016, 4, 961.
[64] Shim, H.-S.; Lin, F.; Kim, J.; Sim, B.; Kim, T.-M.; Moon, C.-K.; Wang, C.-K.; Seo, Y.; Wong, K.-T.; Kim, J.-J. Adv. Energy Mater. 2015, 5, 1500228.
[65] Liu, G.; Jia, J.; Zhang, K.; Jia, X. e.; Yin, Q.; Zhong, W.; Li, L.; Huang, F.; Cao, Y. Adv. Energy Mater. 2019, 9, 1803657.
[66] Zhang, K.; Xia, R.; Fan, B.; Liu, X.; Wang, Z.; Dong, S.; Yip, H. L.; Ying, L.; Huang, F.; Cao, Y. Adv. Mater. 2018, e1803166.
[67] Hadipour, A.; Boer, B. d.; Blom, P. W. M. J. Appl. Phys. 2007, 102, 074506.
[68] Kim, T.; Firdaus, Y.; Kirmani, A. R.; Liang, R.-Z.; Hu, H.; Liu, M.; Labban, A. E.; Hoogland, S.; Beaujuge, P. M.; Sargent, E. H.; Amassian, A. ACS Energy Lett. 2018, 3, 1307.
[69] Zuo, L.; Shi, X.; Jo, S. B.; Liu, Y.; Lin, F.; Jen, A. K. Adv. Mater. 2018, 30, e1706816.
[70] Zheng, Z.; Zhang, S.; Zhang, M.; Zhao, K.; Ye, L.; Chen, Y.; Yang, B.; Hou, J. Adv. Mater. 2015, 27, 1189.
[71] Chang, C.-Y.; Zuo, L.; Yip, H.-L.; Li, C.-Z.; Li, Y.; Hsu, C.-S.; Cheng, Y.-J.; Chen, H.; Jen, A. K. Y. Adv. Energy Mater. 2014, 4, 1301645.
[72] Yuan, J.; Gu, J.; Shi, G.; Sun, J.; Wang, H. Q.; Ma, W. Sci. Rep. 2016, 6, 26459.
[73] Xu, X.; Yu, T.; Bi, Z.; Ma, W.; Li, Y.; Peng, Q. Adv. Mater. 2018, 30, 1703973.
[74] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
[75] Dennler, G.; Scharber, M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C. J. Adv. Mater. 2008, 20, 579.
[76] Zhao, C.; Wang, Z.; Zhou, K.; Ge, H.; Zhang, Q.; Jin, L.; Wang, W.; Yin, S. Acta Chimica Sinica 2016, 74, 251(in Chinese). (赵蔡斌, 王占领, 周科, 葛红光, 张强, 靳玲侠, 王文亮, 尹世伟, 化学学报, 2016, 74, 251.)
[77] Fu, H.; Wang, Z.; Sun, Y. Angew. Chem., Int. Ed. 2019, 58, 4442.
[78] Meng, L.; Yi, Y. Q.; Wan, X.; Zhang, Y.; Ke, X.; Kan, B.; Wang, Y.; Xia, R.; Yip, H. L.; Li, C.; Chen, Y. Adv. Mater. 2019, 31, e1804723.
[79] Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17, 119.
[80] Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Nature Photonics 2018, 12, 131.
[81] Shao, R.; Yang, X.; Yin, S.; Wang, W. Acta Chimica Sinica 2016, 74, 676(in Chinese). (邵绒, 杨鑫博, 尹世伟, 王文亮, 化学学报, 2016, 74, 676.)
[82] Liu, W.; Li, S.; Huang, J.; Yang, S.; Chen, J.; Zuo, L.; Shi, M.; Zhan, X.; Li, C. Z.; Chen, H. Adv. Mater. 2016, 28, 9729.
[83] Chen, S.; Yao, H.; Hu, B.; Zhang, G.; Arunagiri, L.; Ma, L.-K.; Huang, J.; Zhang, J.; Zhu, Z.; Bai, F.; Ma, W.; Yan, H. Adv. Energy Mater. 2018, 8, 1800529.
[84] Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170.
[85] Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. Angew. Chem., Int. Ed. 2019, 58, 4129.
[86] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.
[87] Cheng, P.; Liu, Y.; Chang, S.-Y.; Li, T.; Sun, P.; Wang, R.; Cheng, H.-W.; Huang, T.; Meng, L.; Nuryyeva, S.; Zhu, C.; Wei, K.-H.; Sun, B.; Zhan, X.; Yang, Y. Joule 2019, 3, 432.
[88] Yue, Q.; Zhou, Z.; Xu, S.; Zhang, J.; Zhu, X. J. Mater. Chem. A 2018, 6, 13588.
[89] Kim, J.-H.; Park, J. B.; Xu, F.; Kim, D.; Kwak, J.; Grimsdale, A. C.; Hwang, D.-H. Energy Environ. Sci. 2014, 7, 4118.
[90] Li, K.; Li, Z.; Feng, K.; Xu, X.; Wang, L.; Peng, Q. J. Am. Chem. Soc. 2013, 135, 13549.
[91] Glaser, K.; Beu, P.; Bahro, D.; Sprau, C.; Pütz, A.; Colsmann, A. J. Mater. Chem. A 2018, 6, 9257.
[92] Zuo, L.; Yu, J.; Shi, X.; Lin, F.; Tang, W.; Jen, A. K. Adv. Mater. 2017, 29, 1702547.
[93] Li, W.; Furlan, A.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 2013, 135, 5529.
[94] Qin, Y.; Uddin, M. A.; Chen, Y.; Jang, B.; Zhao, K.; Zheng, Z.; Yu, R.; Shin, T. J.; Woo, H. Y.; Hou, J. Adv. Mater. 2016, 28, 9416.
[95] Duan, C.; Furlan, A.; van Franeker, J. J.; Willems, R. E. M.; Wienk, M. M.; Janssen, R. A. J. Adv. Mater. 2015, 27, 4461.
[96] Hagemann, O.; Bjerring, M.; Nielsen, N. C.; Krebs, F. C. Sol. Energy Meter. Sol. Cells 2008, 92, 1327.
[97] Tang, Z.; George, Z.; Ma, Z.; Bergqvist, J.; Tvingstedt, K.; Vandewal, K.; Wang, E.; Andersson, L. M.; Andersson, M. R.; Zhang, F.; Inganäs, O. Adv. Energy Mater. 2012, 2, 1467.
[98] Li, N.; Baran, D.; Forberich, K.; Machui, F.; Ameri, T.; Turbiez, M.; Carrasco-Orozco, M.; Drees, M.; Facchetti, A.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2013, 6, 3407.
[99] Dou, L.; Gao, J.; Richard, E.; You, J.; Chen, C. C.; Cha, K. C.; He, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2012, 134, 10071.
[100] Zuo, L.; Shi, X.; Fu, W.; Jen, A. K. Adv. Mater. 2019, 31, e1901683.
[101] Liu, F.; Zhou, Z.; Zhang, C.; Zhang, J.; Hu, Q.; Vergote, T.; Liu, F.; Russell, T. P.; Zhu, X. Adv. Mater. 2017, 29, 1606574.
[102] Li, Y.; Lin, J. D.; Liu, X.; Qu, Y.; Wu, F. P.; Liu, F.; Jiang, Z. Q.; Forrest, S. R. Adv. Mater. 2018, 30, e1804416.
[103] Zuo, L.; Chueh, C. C.; Xu, Y. X.; Chen, K. S.; Zang, Y.; Li, C. Z.; Chen, H.; Jen, A. K. Adv. Mater. 2014, 26, 6778.
[104] Dou, L.; Chen, C.-C.; Yoshimura, K.; Ohya, K.; Chang, W.-H.; Gao, J.; Liu, Y.; Richard, E.; Yang, Y. Macromolecules 2013, 46, 3384.
[105] Zheng, Z.; Zhang, S.; Zhang, J.; Qin, Y.; Li, W.; Yu, R.; Wei, Z.; Hou, J. Adv. Mater. 2016, 28, 5133.
[106] Peng, Q.; Huang, Q.; Hou, X.; Chang, P.; Xu, J.; Deng, S. Chem. Commun. 2012, 48, 11452.
[107] Yuan, J.; Ford, M. J.; Xu, Y.; Zhang, Y.; Bazan, G. C.; Ma, W. Adv. Energy Mater. 2018, 8, 1703291.
[108] Chen, C. C.; Chang, W. H.; Yoshimura, K.; Ohya, K.; You, J.; Gao, J.; Hong, Z.; Yang, Y. Adv. Mater. 2014, 26, 5670.
[109] Yusoff, A. R. b. M.; Kim, D.; Kim, H. P.; Shneider, F. K.; da Silva, W. J.; Jang, J. Energy Environ. Sci. 2015, 8, 303.
[110] Di Carlo Rasi, D.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Adv. Mater. 2018, e1803836.
[111] Machui, F.; Hösel, M.; Li, N.; Spyropoulos, G. D.; Ameri, T.; Søndergaard, R. R.; Jørgensen, M.; Scheel, A.; Gaiser, D.; Kreul, K.; Lenssen, D.; Legros, M.; Lemaitre, N.; Vilkman, M.; Välimäki, M.; Nordman, S.; Brabec, C. J.; Krebs, F. C. Energy Environ. Sci. 2014, 7, 2792.
[112] Gu, X.; Shaw, L.; Gu, K.; Toney, M. F.; Bao, Z. Nat. Commun. 2018, 9, 534.
[113] Li, N.; Brabec, C. J. Energy Environ. Sci. 2015, 8, 2902.
[114] Guo, F.; Li, N.; Radmilović, V. V.; Radmilović, V. R.; Turbiez, M.; Spiecker, E.; Forberich, K.; Brabec, C. J. Energy Environ. Sci. 2015, 8, 1690.
[115] Andersen, T. R.; Dam, H. F.; Hösel, M.; Helgesen, M.; Carlé, J. E.; Larsen-Olsen, T. T.; Gevorgyan, S. A.; Andreasen, J. W.; Adams, J.; Li, N.; Machui, F.; Spyropoulos, G. D.; Ameri, T.; Lemaître, N. e.; Legros, M.; Scheel, A.; Gaiser, D.; Kreul, K.; Berny, S.; Lozman, O. R.; Nordman, S.; Välimäki, M.; Vilkman, M.; Søndergaard, R. R.; Jørgensen, M.; Brabec, C. J.; Krebs, F. C. Energy Environ. Sci. 2014, 7, 2925.
[116] Dam, H. F.; Andersen, T. R.; Pedersen, E. B. L.; Thydén, K. T. S.; Helgesen, M.; Carlé, J. E.; Jørgensen, P. S.; Reinhardt, J.; Søndergaard, R. R.; Jørgensen, M.; Bundgaard, E.; Krebs, F. C.; Andreasen, J. W. Adv. Energy Mater. 2015, 5, 1400736.
[117] Di Carlo Rasi, D.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Adv. Energy Mater. 2017, 7, 1701664.
[118] Gilot, J.; Wienk, M. M.; Janssen, R. A. J. Adv. Funct. Mater. 2010, 20, 3904.
[119] Alemu, D.; Wei, H.-Y.; Ho, K.-C.; Chu, C.-W. Energy Environ. Sci. 2012, 5, 9662.
[120] Na, S.-I.; Kim, S.-S.; Jo, J.; Kim, D.-Y. Adv. Mater. 2008, 20, 4061.
[121] Spyropoulos, G. D.; Kubis, P.; Li, N.; Baran, D.; Lucera, L.; Salvador, M.; Ameri, T.; Voigt, M. M.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2014, 7, 3284.
[122] Du, X.; Zeng, Q.; Zhang, H.; Yang, B. Chin. J. Chem. 2017, 35, 551.
文章导航

/