综述

细胞色素P450酶催化的烷烃选择性羟化

  • 王曦翎 ,
  • 陈杰 ,
  • 马娜娜 ,
  • 丛志奇
展开
  • a 中国科学院青岛生物能源与过程研究所 中国科学院生物燃料重点实验室 山东省合成生物学重点实验室 青岛 266101;
    b 中国科学院大学 北京 100049
王曦翎,助理研究员,2016年于中国海洋大学医药学院获得医学博士学位,2016年7月至2019年8月在中国科学院青岛生物能源与过程研究所从事博士后研究.2019年9月起于中国科学院青岛生物能源与过程研究所工作.主要从事细胞色素P450酶的生物催化研究;丛志奇,研究员,博士生导师,2009年获得日本熊本大学理学博士学位.2009年至2016年,先后在日本分子科学研究所、名古屋大学从事科学研究工作.2016年05月加入中国科学院青岛生物能源与过程研究所,担任课题组长.2017年入选青岛市创新领军人才.从事金属酶的化学生物学与合成生物学研究,当前主要研究兴趣包括细胞色素P450酶的人工设计与实验室进化、甲烷和二氧化碳生物转化和非天然生物催化反应开发等.主持国家自然科学基金面上项目2项,中国科学院、青岛市和研究所自主部署项目等多项科研课题.

收稿日期: 2020-03-24

  网络出版日期: 2020-05-08

基金资助

项目受国家自然科学基金(Nos.21778060,21977104)和青岛市创新领军人才计划(No.18-1-2-9-zhc)资助.

Selective Hydroxylation of Alkanes Catalyzed by Cytochrome P450 Enzymes

  • Wang Xiling ,
  • Chen Jie ,
  • Ma Nana ,
  • Cong Zhiqi
Expand
  • a CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101;
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-03-24

  Online published: 2020-05-08

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21778060, 21977104) and the Qingdao Innovative Leading Talent Project (No. 18-1-2-9-zhc).

摘要

碳氢键选择氧化是合成化学领域的重要课题,其中烷烃选择性羟化反应更是面临着化学选择性、区域选择性和立体选择性等多重挑战.细胞色素P450酶广泛分布于动植物和微生物体内,是公认的多功能生物氧化催化剂.P450酶对惰性C-H键的选择性氧化具有独特优势,在催化烷烃选择性羟化反应方面拥有巨大潜力.本综述简述了P450单加氧酶及其催化烷烃选择性羟化的反应机理,梳理了来自CYP153家族、CYP52家族和其他家族的天然P450酶催化各类烷烃底物的氧化反应和选择性,讨论了理性设计和定向进化策略在开发烷烃羟化P450突变酶过程中的经典案例,介绍了底物工程、诱饵分子、双功能小分子协同催化等几种化学活化P450酶的策略及其在烷烃羟化上的应用,探讨了P450酶在烷烃选择性羟化方面所面临的挑战和解决途径,并展望了其应用前景.

本文引用格式

王曦翎 , 陈杰 , 马娜娜 , 丛志奇 . 细胞色素P450酶催化的烷烃选择性羟化[J]. 化学学报, 2020 , 78(6) : 490 -503 . DOI: 10.6023/A20030086

Abstract

The selective oxyfunctionalization of unactivated C-H bonds is one of long-standing issues and current topics in synthetic chemistry. One of the major synthetic targets for these reactions is the direct and selective hydroxylation of alkanes to alcohols, however, which faces many severe challenges in controlling chemoselectivity, regioselectivity and stereoselectivity. In nature, the oxidative metalloenzymes is capable of selectively catalyzing the insertion of oxygen into inert C-H bonds of alkanes, such as methane monooxygenases (MMO), soluble butane monooxygenases (sBMO), fungal peroxygenases and Cytochrome P450 monooxygenases (P450s). Among them, P450s that catalyze a variety of oxygenation reactions have attracted special attentions because of some intrinsic advantages. P450s are widely distributed in plants, animals and microorganisms and over 41000 sequences of P450 genes have been named from various databases, which enhances the potentials of P450s in developing the oxidative biocatalysts. In addition, compared with MMOs, P450s that have smaller molecule weight (≈45 kDa) are simple and amenable to recombinant expression and engineering. Herein, we reviewed the recent progress of alkanes hydroxylation by P450 enzymes either in its natural forms or engineered variants, as well as chemical activated systems. The related background and the catalytic mechanism of P450s for alkanes hydroxylation were firstly discussed. The representative examples by natural P450s mainly from CYP153, CYP52 and other P450 families were then outlined. The strategies of rational design and directed evolution on P450s engineering were then summarized focusing on the native/non-native alkane substrates. Three unusual strategies, including substrate engineering, decoy molecule, and dual-functional small molecule co-catalysis, were also discussed on their applications for activating P450s to hydroxylate non-native small alkanes. Finally, we perspective the challenges and solutions that faced by P450 enzymes in the development of new biocatalytic systems toward selective hydroxylation of alkanes. In conclusion, cytochrome P450 enzymes in both of their native and modified form are promising biocatalysts for alkanes hydroxylation and need further be investigated to gain the practical industrial applications.

参考文献

[1] Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, Routledge, New York, 2003.
[2] Hashiguchi, B. G.; Konnick, M. M.; Bischof, S. M.; Gustafson, S. J.; Devarajan, D.; Gunsalus, N.; Daniel H.; Ess, D. H.; Periana, R. A. Science 2014, 343, 1232.
[3] Soussan, L.; Pen, N.; Belleville, M. P.; Marcano, J. S.; Jeanjean, D. P. J. Biotechnol. 2016, 222, 117.
[4] Sirajuddin, S.; Rosenzweig, A. C. Biochemistry 2015, 54, 2283.
[5] Cahalan, E.; Ernfors, M.; Müller, C.; Devaney, D.; Laughlin, R. J.; Watson, C. J.; Hennessy, D.; Grant, J.; Khalil, M. I.; McGeough, K. L.; Richards, K. G. Agric. Ecosyst. Environ. 2015, 199, 339.
[6] Van Beilen, J. B.; Wubbolts, M. G.; Witholt, B. Biodegradation 1994, 5, 161.
[7] Ortiz de Montellano, P. R. Cytochrome P450:Structure, Mechanism, and Biochemistry, Routledge, New York, 2005.
[8] (a) Urlacher, V. B.; Girhard, M. Trends Biotechnol. 2019, 37, 882.
(b) Wei, Y.; Ang, E. L.; Zhao, H. Curr. Opin. Chem. Biol. 2018, 43, 1.
(c) Jiang, Y.; Li, S. Chin. J. Org. Chem. 2018, 38, 2307(in Chinese). (蒋媛媛, 李盛英, 有机化学, 2018, 38, 2307).
(d) Cheng, Z.; Chen, P.; Liu, G. Acta Chim. Sinica 2019, 77, 856(in Chinese). (成忠明, 陈品红, 刘国生, 化学学报, 2019, 77, 856).
(e) Liu, Q.; Zhou, D.; Li, Z.; Luo, W.; Guo, C. Chin. J. Chem. 2017, 35, 1063.
(f) He, X.; Chen, L.; He, Q.; Xiao, H.; Zhou, X.; Ji, H. Chin. J. Chem. 2017, 35, 693.
(g) Lu, W.; Chen, X.; Feng, J.; Bao, Y.-J.; Wang, Y.; Wu, Q.; Zhu, D. Appl. Environ. Microbiol. 2018, 84, e00503-18.
[9] Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M. D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D. R.; Teoh, K. H.; Reed, D. W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K. W.; Fickes, S.; Galazzo, J.; Gaucher, S. P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L. F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P. S.; Keasling, J. D.; Reiling, K. K.; Renninger, N. S.; Newman, J. D. Nature 2013, 496, 528.
[10] (a) Zhou, Q.; Luo, G.; Zhang, H.; Tang, G. Chin. J. Org. Chem. 2019, 39, 1169(in Chinese). (周强, 罗光彩, 张惠展, 唐功利, 有机化学, 2019, 39, 1169).
(b) Bai, X.; Guo, H.; Chen, D.; Yang, Q.; Tao, J.; Liu, W. Org. Chem. Front. 2020, 7, 584.
(c) Lv, J.-M.; Hu, D.; Gao, H.; Kushiro, T.; Awakawa, T.; Chen, G.-D.; Wang, C.-H.; Abe, I.; Yao, X.-S. Nat. Commun. 2017, 8, 1644.
[11] (a) Qi, F.; Lei, C.; Li, F.; Zhang, X.; Wang, J.; Zhang, W.; Fan, Z.; Li, W.; Tang, G.; Xiao, Y.; Zhao, G.; Li, S. Nat. Commun. 2018, 9, 2342.
(b) Sun, W.; Xue, H.; Liu, H.; Lv, B.; Yu, Y.; Wang, Y.; Huang, M.; Li, C. ACS Catal. 2020, 10, 4253.
(c) Tian, X.; Ruana, J.-X.; Huang, J.-Q.; Yang, C.-Q.; Fang, X.; Chen, Z.-W.; Hong, H.; Wang, L.-J.; Mao, Y.-B.; Lu, S.; Zhang, T.-Z.; Chen, X.-Y. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E5410.
(d) Wang, W.-F.; Xiao, H.; Zhong, J.-J. Biotechnol. Bioeng. 2018, 115, 1842.
[12] Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013, 339, 307.
[13] McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 9309.
[14] Kan, S.; Huang, X.; Gumulya, Y. Nature 2017, 552, 132.
[15] Haynes, C. A.; Gonzalez, R. Nat. Chem. Biol. 2014, 10, 331.
[16] Munz, D.; Strassner, T. Inorg. Chem. 2015, 54, 5043.
[17] Bordeaux, M.; Galarneau, A.; Drone, J. Angew. Chem., Int. Ed. 2012, 51, 10712.
[18] Lawton, T. J.; Rosenzweig, A. C. J. Am. Chem. Soc. 2016, 138, 9327.
[19] Nelson, D. R. Biochim. Biophys. Acta. Proteins Proteom. 2018, 1866, 141.
[20] (a) Poulos, T. L.; Finzel, B. C.; Howard, A. J. J. Mol. Biol. 1987, 195, 687.
(b) Tripathi, S.; Li, H.; Poulos, T. L. Science 2013, 340, 1227.
[21] Ravichandran, K. G.; Boddupalli, S. S.; Hasemann, C. A.; Peterson, J. A.; Deisenhofer, J. Science 1993, 261, 731.
[22] Haines, D. C.; Tomchick, D. R.; Machius, M.; Peterson, J. A. Biochemistry 2001, 40, 13456.
[23] (a) Rittle, J.; Green, M. T. Science 2010, 330, 933.
(b) Li, X.-X.; Postils, V.; Sun, W.; Faponle, A. S.; Solà, M.; Wang, Y.; Nam, W.; de Visser, S. P. Chem. Eur. J. 2017, 23, 6406.
[24] Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, B. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.
[25] Whitehouse, C. J.; Bell, S. G.; Wong, L. L. Chem. Soc. Rev. 2012, 41, 1218.
[26] Xu, F.; Bell, S. G.; Lednik, J.; Insley, A.; Rao, Z.; Wong, L. L. Angew. Chem., Int. Ed. 2005, 44, 4029.
[27] Fasan, R.; Chen, M. M.; Crook, N. C.; Arnold, F. H. Angew. Chem., Int. Ed. 2007, 46, 8414.
[28] Chen, J.; Kong, F.; Ma, N.; Zhao, P.; Liu, C.; Wang, X.; Cong, Z. ACS Catal. 2019, 9, 7350.
[29] (a) Scheps, D.; Malca, S. H.; Hoffmann, H.; Nestl, B. M.; Hauer, B. Org. Biomol. Chem. 2011, 9, 6727.
(b) Funhoff, E. G.; Bauer, U.; García-Rubio, I.; Witholt, B.; Van Beilen, J. B. J. Bacteriol. 2006, 5220.
(c) Bordeaux, M.; Girval, D.; Rullaud, R.; Subileau, M.; Dubreucq, E.; Drone, J. Appl. Microbiol. Biot. 2014, 98, 6275.
[30] (a) Hsieh, S.-C.; Wang, J.-H.; Lai, Y.-C.; Su, C.-Y.; Lee, K.-T. Appl. Environ. Microbiol. 2018, 84, e01806-17.
(b) Kochius, S.; Marwijk, J.; Ebrecht, A. C.; Opperman, D. J.; Smit, M. S. Catalysts 2018, 8, 531.
[31] Nie, Y.; Liang, J.-L.; Fang, H.; Tang, Y.-Q.; Wu, X.-L. Appl. Microbiol. Biotechnol. 2014, 98, 163.
[32] Zimmer, T.; Ohkuma, M.; Ohta, A.; Takagi, M.; Schunck, W. H. Biochem. Biophys. Res. Commun. 1996, 224, 784.
[33] Hanano, A.; Shaban, M.; Almousally, I.; Al-Ktaifani, M. Chemosphere 2015, 135, 418.
[34] Craft, D. L.; Madduri, K. M.; Eshoo, M.; Wilson, C. R. Appl. Environ. Microbiol. 2003, 5983.
[35] Van Bogaert, I. N. A.; Demey1, M.; Develter, D.; Soetaert, W.; Vandamme, E. J. FEMS Yeast Res. 2009, 9, 87.
[36] (a) Lida, T.; Sumita, T.; Ohta, A.; Takagi, M. Yeast 2000, 16, 1077.
(b) Panwar, S. L.; Krishnamurthy, S.; Gupta, V.; Alarco, A. M.; Raymond, M.; Sanglard, D.; Prasad, R. Yeast 2001, 18, 1117.
(c) Carratore, R. D.; Gervasi, P. G.; Contini, M. P.; Beffy, P.; Maserti, B. E.; Giovannetti, G.; Brondolo, A.; Longo, V. Biotechnol. Lett. 2011, 33, 1201.
[37] Trippe, K. M.; Wolpert, T. J.; Hyman, M. R.; Ciuffetti, L. M. Biodegradation 2014, 25, 137.
[38] Park, H.; Park, G.; Jeon, W.; Ahn, J.-O.; Yang, Y.-H.; Choi, K.-Y. Biotechnol. Adv. 2020, DOI:10.1016/j.biotechadv.2020.107504.
[39] (a) Von Bühler, C. J.; Urlacher, V. B. Chem. Commun. 2014, 50, 4089.
(b) Tieves, F.; Erenburg, I. N.; Mahmoud, O.; Urlacher, V. B. Biotechnol. Bioeng. 2016, 113, 1845.
[40] Syed, K.; Porollo, A.; Lam, Y. W. Appl. Environ. Microbiol. 2013, 79, 2692.
[41] (a) Greer, S.; Wen, M.; Bird, D.; Wu, X.; Samuels, L.; Kunst, L.; Jetter, R. Plant Physiol. 2007, 145, 653.
(b) Zhang, D.; Yang, H.; Wang, X.; Qiu, Y.; Tian, L.; Qi, X.; Qu, L. Q. New Phytol. 2020, 225, 2094.
[42] Minerdi, D.; Sadeghi, S. J.; Nardo, G. D.; Rua, F.; Castrignanò, S.; Allegra, P.; Gilardi, G. Mol. Microbiol. 2015, 95, 539.
[43] Fisher, M. B.; Zheng, Y. M.; Rettie, A. E. Biochem. Biophys. Res. Commun. 1998, 248, 352.
[44] (a) Maseme, M. J.; Pennec, A.; Marwijk, J.; Opperman, D. J.; Smit, M. S. Angew. Chem., Int. Ed. 2020, DOI:10.1002/anie. 202001055.
(b) Manning, J.; Tavanti, M.; Porter, J.; Kress, N.; De Visser, S.; Turner, N.; Flitsch, S. Angew. Chem., Int. Ed. 2019, 58, 5668.
(c) Sakai, K.; Matsuzaki, F.; Wise, L.; Sakai, Y.; Jindou, S.; Ichinose, H.; Takaya, N.; Kato, M.; Wariishi, H.; Shimizu, M. Appl. Environ. Microbiol. 2018, 84, e01091-18.
[45] (a) Johnston, J. B.; Kells, P. M.; Podust, L. M.; Ortiz de Montellano, P. R. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20687.
(b) Salamanca, D.; Karande, R.; Schmid, A.; Dobslaw, D. Appl. Microbiol. Biotechnol. 2015, 99, 6889.
[46] (a) Yin, Y.-C.; Yu, H.-L.; Luan, Z.-J.; Li, R.-J.; Ouyang, P.-F.; Liu, J.; Xu, J.-H. ChemBioChem 2014, 15, 2443.
(b) Xie, L.; Chen, K.; Cui, H.; Wan, N.; Cui, B.; Han, W.; Chen, Y. ChemBioChem 2020, 20, DOI:10.1002/cbic.201900691.
[47] Bell, S. G.; Yang, W.; Dale, A.; Zhou, W.; Wong, L. L. Appl. Microbiol. Biotechnol. 2013, 97, 3979.
[48] Shoji, O.; Aiba, Y.; Watanabe, Y. Acc. Chem. Res. 2019, 52, 925.
[49] Dus, K.; Katagiri, M.; Yu, C. A.; Erbes, D. L.; Gunsalus, I. C. Biochem. Biophys. Res. Commun. 1970, 40, 1423.
[50] Stevenson, J. A.; Westlake, A. C. G.; Whittock, C.; Wong, L. L. J. Am. Chem. Soc. 1996, 118, 12846.
[51] Stevenson, J. A.; Bearpark, J. K.; Wong, L. L. New J. Chem. 1998, 22, 551.
[52] Bell, S. G.; Stevenson, J. A.; Boyd, H. D.; Campbell, S.; Riddle, A. D.; Orton, E. L.; Wong, L. L. Chem. Commun. 2002, 490.
[53] Bell, S. G.; Orton, E. L.; Boyd, H. D.; Stevenson, J. A.; Riddle, A. D.; Campbell, S.; Wong, L. L. Dalton Trans. 2003, 2133.
[54] Poulos, T. L.; Finzel, B. C.; Howard, A. J. Biochemistry 1986, 25, 5314.
[55] Miura, Y.; Fulco, A. J. Biochim. Biophys. Acta 1975, 388, 305.
[56] Adam, W.; Lukacs, Z.; Saha-Möller, C. R.; Weckerle, B.; Schreier, P. Eur. J. Org. Chem. 2000, 16, 2923.
[57] Appel, D.; Lutz, S.; Fischer, P.; Schwaneberg, U.; Schmid, R. D. J. Biotechnol. 2001, 88, 167.
[58] Glieder, A.; Farinas, E. T.; Arnold, F. H. Nat. Biotechnol. 2002, 20, 1135.
[59] Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem. Soc. 2003, 125, 13442.
[60] Meinhold, P.; Peters, M. W.; Chen, M. M.; Takahashi, K.; Arnold, F. H. ChemBioChem 2005, 6, 1765.
[61] Farinas, E. T.; Schwaneberg, U.; Gliede, A.; Arnold, F. H. Adv. Synth. Catal. 2001, 343, 601.
[62] Weber, E.; Seifert, A.; Antonovici, M.; Geinitz, C.; Pleiss, J.; Urlacher, V. B. Chem. Commun. 2011, 47, 944.
[63] Staudt, S.; Burda, E.; Giese, C.; Müller, C. A.; Marienhagen, J.; Schwaneberg, U.; Hummel, W.; Drauz, K.; Gröger, H. Angew. Chem., Int. Ed. 2013, 52, 2359.
[64] Müller, C. A.; Akkapurathu, B.; Winkler, T.; Svenja Staudt, S.; Hummel, W.; Gröger, H.; Schwaneberg, U. Adv. Synth. Catal. 2013, 355, 1787.
[65] Pennec, A.; Hoomann, F.; Smit, M. S.; Opperman, D. J. ChemCatChem 2015, 7, 236.
[66] Roiban, G. D.; Reetz, M. T. Chem. Commun. 2015, 51, 2208.
[67] Roiban, G. D.; Agudo, R.; Reetz, M. T. Angew. Chem., Int. Ed. 2014, 53, 8659.
[68] Zhang, W.; Tang, W.; Wang, Z.; Li, Z. Adv. Synth. Catal. 2010, 352, 3380.
[69] Chang, D. L.; Feiten, H. J.; Witholt, B.; Li, Z. Tetrahedron:Asymmetry 2002, 13, 2141.
[70] Chang, D. L.; Feiten, H. J.; Engesser, K. H.; Van Beilen, J. B.; Witholt, B.; Li, Z. Org. Lett. 2002, 4, 1859.
[71] Reetz, M. T. Angew. Chem., Int. Ed. 2011, 50, 138.
[72] Yang, Y.; Liu, J.; Li, Z. Angew. Chem., Int. Ed. 2014, 53, 3120.
[73] Landwehr, M.; Hochrein, L.; Otey, C. R.; Kasrayan, A.; Backvall, J. E.; Arnold, F. H. J. Am. Chem. Soc. 2006, 128, 6058.
[74] Li, S.; Chaulagain, M. R.; Knauff, A. R.; Podust, L. M.; Montgomery, J.; Sherman, D. H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18463.
[75] Narayan, A. R. H.; Jiménez-Osés, G.; Liu, P.; Negretti, S.; Zhao, W.; Gilbert, M. M.; Ramabhadran, R. O., Yand, Y.-F.; Furan, L. R.; Li, Z.; Podust, L. M.; Montgomery, J.; Houk, K. N.; Sherman, D. H. Nat. Chem. 2015, 7, 653.
[76] Ma, N.; Chen, Z.; Chen, J.; Wang, C.; Zhou, H.; Yao, L.; Shoji, O.; Watanabe, Y.; Cong, Z. Angew. Chem., Int. Ed. 2018, 57, 7628.
[77] Xu, J.; Wang, C.; Cong, Z. Chem. Eur. J. 2019, 25, 6853.
[78] Shoji, O.; Yanagisawa, S.; Stanfield, J. K.; Suzuki, K.; Cong, Z.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. Angew. Chem., Int. Ed. 2017, 56, 10324.
[79] Cong, Z.; Shoji, O.; Kasai, C.; Kawakami, N.; Sugimoto, H.; Shiro, Y.; Watanabe, Y. ACS Catal. 2015, 5, 150.
[80] Zhang, W.; Ma, M.; Hollmann, F. J. Am. Chem. Soc. 2019, 141, 3116.
[81] Demming, R. M.; Hammer, S. C.; Nestl, B. M.; Gergel, S.; Fademrecht, S.; Pleiss, J.; Hauer, B. Angew. Chem., Int. Ed. 2019, 58, 173.
[82] (a) Wang, Y.; Lan, D.; Durrani, R.; Hollmann, F. Curr. Opin. Chem. Biol. 2017, 37, 1.
(b) Piontek, K.; Strittmatter, E.; Ullrich, R.; Gröbe, G.; Pecyna, M. J.; Kluge, M.; Scheibner, K.; Hofrichter, M.; Plattner, D. A. J. Biol. Chem. 2013, 288, 34767.
[83] Wang, X.; Chen, J.; Chen, Z.; Zhou, H.; Cong, Z. Biotic Resources 2017, 39, 75(in Chinese). (王曦翎, 陈杰, 陈置丰, 周海峰, 丛志奇, 生物资源, 2017, 39, 75).
[84] Chen, Z.; Chen, J.; Ma, N.; Zhou, H.; Cong, Z. J. Porphyr. Phthalocya. 2018, 22, 831.
[85] Jiang, Y.; Wang, C.; Ma, N.; Chen, J.; Liu, C.; Wang, F.; Xu, J.; Cong, Z. Catal. Sci. Technol. 2020, 10, 1219.
[86] Kawakami, N.; Shoji, O.; Watanabe, Y. Angew. Chem., Int. Ed. 2011, 50, 5315.
[87] (a) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Manfred, T.; Reetz, M. T. Angew. Chem., Int. Ed. 2011, 50, 2720.
(b) Zilly, F. E.; Acevedo, J. P.; Augustyniak, W.; Deege, A.; Häusig, U. W.; Manfred, T.; Reetz, M. T. Angew. Chem., Int. Ed. 2013, 52, 13503.
[88] Kawakami, N.; Shoji, O.; Watanabe, Y. Chem. Sci. 2013, 4, 2344.
[89] Ariyasu, S.; Kodama, Y.; Kasai, C.; Cong, Z.; Stanfield, J. K.; Aiba, Y.; Watanabe, Y.; Shoji, O. ChemCatChem 2019, 11, 4709.
[90] Kawakami, N.; Cong, Z.; Shoji, O.; Watanabe, Y. J. Porphyr. Phthalocya. 2015, 19, 329.
[91] Munday, S. D.; Shoji, O.; Watanabe, Y.; Wong, L. L.; Bell, S. G. Chem. Commun. 2016, 52, 1036.
[92] Peter, S.; Kinne, M.; Wang, X.; Ullrich, R.; Kayser, G.; Groves, J. T. FEBS J. 2011, 278, 3667.
[93] Cooley, R. B.; Dubbels, B. L.; Sayavedra-Soto, L. A.; Bottomley, P. J.; Arp, D. Microbiology 2009, 155, 2086.
[94] Chen, M.; Coelho, P. S.; Arnold, F. H. Adv. Synth. Catal. 2012, 354, 964.
[95] Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
[96] Lee, J. H.; Nam, D. H.; Lee, S. H.; Park, J. H.; Park, S. J.; Lee, S. H.; Park, C. B.; Jeong, K. J. Bioconjugate Chem. 2014, 25, 2101.
[97] Ge, J.; Lei, J.; Zare, R. N. Nat. Nanotechnol. 2012, 7, 428.
[98] Khatri, Y.; Hannemann, F.; Ewen, K. M.; Pistorius, D.; Perlova, O.; Kagawa, N.; Brachmann, A. O.; Müller, R.; Bernhardt, R. Chem. Biol. 2010, 17, 1295.
[99] Lee, J. H.; Nam, D. H.; Lee, S. H.; Park, J. H.; Park, C. B.; Jeong, K. J. J. Ind. Eng. Chem. 2016, 33, 28.
[100] Karande, R.; Schmid, A.; Buehler, K. Org. Process Res. Dev. 2016, 20, 361.
文章导航

/