研究论文

分级结构氮掺杂碳纳米笼:高倍率长寿命可充电镁电池正极材料

  • 汤功奥 ,
  • 毛鲲 ,
  • 张静 ,
  • 吕品 ,
  • 程雪怡 ,
  • 吴强 ,
  • 杨立军 ,
  • 王喜章 ,
  • 胡征
展开
  • 南京大学化学化工学院 介观化学教育部重点实验室 南京 210023

收稿日期: 2020-01-12

  网络出版日期: 2020-05-15

基金资助

项目受国家重点研发计划(2018YFA0209100,2017YFA0206500)和国家自然科学基金(21773111,21972061,21832003,21573107,51571110)资助.

Hierarchical Nitrogen-doped Carbon Nanocages as High-rate Long-life Cathode Material for Rechargeable Magnesium Batteries

  • Tang Gong-ao ,
  • Mao Kun ,
  • Zhang Jing ,
  • Lyu Pin ,
  • Cheng Xueyi ,
  • Wu Qiang ,
  • Yang Lijun ,
  • Wang Xizhang ,
  • Hu Zheng
Expand
  • Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Received date: 2020-01-12

  Online published: 2020-05-15

Supported by

Project supported by the jointly financial support from the National Key Research and Development Program of China (2018YFA0209100, 2017YFA0206500) and the National Natural Science Foundation of China (21773111, 21972061, 21832003, 21573107, 51571110).

摘要

可充电镁电池成本低、安全性好,是非常有前景的下一代二次电池,其关键之一是开发高性能的正极材料.本工作首次利用分级结构氮掺杂碳纳米笼(hNCNC)作为可充电镁电池的正极材料,展现出高放电比容量(71 mAh·g-1@100 mA·g-1)、优异的倍率性能(60 mAh·g-1@2000 mA·g-1)和长循环稳定性(1000圈容量保留率83%@1000 mA·g-1).hNCNC呈现电容行为主导的储镁机制,理论研究表明镁离子主要吸附在微孔边缘的碳原子、吡啶氮或吡咯氮等活性位点上.其优异储镁性能可归因于:(1) hNCNC的大比表面积(1590 m2·g-1)、丰富微孔缺陷和高吡啶/吡咯氮含量(4.49 at.%)有效提升了储镁容量;(2) hNCNC的高导电性、多级孔道结构及N掺杂导致的高浸润性有利于电荷传输,降低了电池的等效串联电阻,从而改善了倍率性能;(3) hNCNC的稳定碳骨架结构及其表面吸附储镁机制使其具有优异的长循环稳定性.

本文引用格式

汤功奥 , 毛鲲 , 张静 , 吕品 , 程雪怡 , 吴强 , 杨立军 , 王喜章 , 胡征 . 分级结构氮掺杂碳纳米笼:高倍率长寿命可充电镁电池正极材料[J]. 化学学报, 2020 , 78(5) : 444 -450 . DOI: 10.6023/A20010011

Abstract

Rechargeable magnesium batteries (rMBs) are promising next-generation secondary batteries owing to the low-cost, high safety and dendrite-free property of Mg metal. The key of rMBs technology is to develop high-performance cathode materials. Usually, the intercalation-type cathodes such as Mo6S8, MoS2 and Ti3C2Tx suffer from the inferior rate performance owing to the sluggish Mg2+ ions solid-diffusion kinetics, and the conversion-type cathodes such as S and CuS are beset with the poor cycling stability owing to the pulverization and loss of active species. Recently, sp2 carbon materials exhibited considerable magnesium storage performance through an interfacial charge storage/release. Ideal carbon-based cathodes for rMBs should possess the features of high specific surface area and abundant active sites for magnesium storage, high conductivity and porous structure for facilitating charge transfer, as well as high mechanical stability. Herein, we employed the hierarchical nitrogen-doped carbon nanocages (hNCNC) featuring large surface area, abundant surface defects, coexisting micro-meso-macropores and high conductivity as the rMBs cathode for the first time, which exhibited high discharge capacity of 71 mAh·g-1 at 100 mA·g-1, excellent rate performance (60 mAh·g-1 at 2000 mA·g-1) and ultra-high cycling stability (83% capacity retention after 1000 cycles at 1000 mA·g-1). The capacitive magnesium storage mechanism is predominant in the charging-discharging process. Theoretical studies reveal that magnesium ions are adsorbed on the carbon, pyridinic-nitrogen or pyrrolic-nitrogen atoms at the edge of micropores. The excellent magnesium storage performance of hNCNC is attributed to the following reasons:(i) the hNCNC with large surface area (1590 m2·g-1), abundant micropore defects and high content of pyridinic and pyrrolic nitrogen (4.49 at.%) provides sufficient active sites for magnesium storage, resulting in the high discharge capacity; (ii) the coexisting micro-meso-macropores structure, good conductivity and improved wettability via N-doping facilitate the charge transfer kinetics, and decrease the equivalent series resistance of rMBs, thereby leading to the improved rate capability; (iii) the robust scaffold of hNCNC and the capacitive-dominated magnesium storage mechanism ensure the high cycling stability. This study demonstrates the high-rate and durable performance of hNCNC in rMBs, and suggests a promising strategy to improve the rMBs performance by increasing edges and suitable dopants of nanocarbons.

参考文献

[1] Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Prog. Mater. Sci. 2014, 66, 1.
[2] Li, L.; Lu, Y.; Zhang, Q.; Zhao, S.; Hu, Z.; Chou, S. L. Small 2019, 1902767.
[3] Zhang, C. H.; Li, N. W.; Yao, H. R.; Liu, L.;Yin, Y. X.; Guo, Y. G. Acta Chim. Sinica 2017, 75, 206. (张长欢, 李念武, 姚胡蓉, 刘琳, 殷雅侠, 郭玉国, 化学学报, 2017, 75, 206.)
[4] Zheng, Y. P.; NuLi, Y.; Yang, J.; Chen, Q.; Wang, J. L. Chem. Ind. Eng. Prog. 2011, 30, 1024. (郑育培, 努丽燕娜, 杨军, 陈强, 王久林, 化工进展, 2011, 30, 1024.)
[5] Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724.
[6] NuLi, Y.; Yang, J.; Zheng, Y. P.; Wang, J. L. J. Inorg. Mater. 2011, 26, 129. (努丽燕娜, 杨军, 郑育培, 王久林, 无机材料学报, 2011, 26, 129.)
[7] Mori, T.; Masese, T.; Orikasa, Y.; Huang, Z. D.; Okado, T.; Kim, J.; Uchimoto, Y. Phys. Chem. Chem. Phys. 2016, 18, 13524.
[8] NuLi, Y.; Zheng, Y.; Wang, Y.; Yang, J.; Wang, J. J. Mater. Chem. 2011, 21, 12437.
[9] Perera, S. D.; Archer, R. B.; Damin, C. A.; Mendoza-Cruz, R.; Rhodes, C. P. J. Power Sources 2017, 343, 580.
[10] Xiao, Y.; Zou, J. X.; Guo, R.; Zeng, X. Q.; Ding, W. J. Chin. J. Power Sources 2019, 43, 1676. (肖烨, 邹建新, 郭瑞, 曾小勤, 丁文江, 电源技术, 2019, 43, 1676.)
[11] Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Langmuir 2013, 29, 10964.
[12] Liu, Y.; Jiao, L.; Wu, Q.; Du, J.; Zhao, Y.; Si, Y.; Wang, Y.; Yuan, H. J. Mater. Chem. A 2013, 1, 5822.
[13] Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K. A.; Ceder, G.; Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273.
[14] Xu, M.; Lei, S.; Qi, J.; Dou, Q.; Liu, L.; Lu, Y.; Huang, Q.; Shi, S.; Yan, X. ACS Nano 2018, 12, 3733.
[15] Zhang, Y.; Geng, H.; Wei, W.; Ma, J.; Chen, L.; Li, C. C. Energy Storage Mater. 2019, 20, 118.
[16] Zhang, Z.; Dong, S.; Cui, Z.; Du, A.; Li, G.; Cui, G. Small Methods 2018, 2, 1800020.
[17] Wang, L.; Jiang, B.; Vullum, P. E.; Svensson, A. M.; Erbe, A.; Selbach, S. M.; Xu, H.; Vullum-Bruer, F. ACS Nano 2018, 12, 2998.
[18] Dubey, R. J.; Colijn, T.; Aebli, M.; Hanson, E. E.; Widmer, R.; Kravchyk, K. V.; Kovalenko, M. V.; Stadie, N. P. ACS Appl. Mater. Interfaces 2019, 11, 39902.
[19] Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.
[20] Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Adv. Mater. 2019, 1904177.
[21] Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W.; Liu, J.; Hu, Z. Adv. Mater. 2015, 27, 3541.
[22] Lyu, Z. Y.; Yang, L. J.; Xu, D.; Zhao, J.; Lai, H. W.; Jiang, Y. F.; Wu, Q.; Li, Y.; Wang, X. Z.; Hu, Z. Nano Res. 2015, 8, 3535.
[23] Cai, Y. J.; Liu, C. X.; Zhuo, O.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2017, 75, 686. (蔡跃进, 刘晨霞, 卓欧, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2017, 75, 686.)
[24] Wu, Z. S.; Ren, W.; Xu, L.; Li, F.; Cheng, H. M. ACS Nano 2011, 5, 5463.
[25] Xu, D.; Chen, C.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y.; Zhang, L. Adv. Energy Mater. 2016, 6, 1501929.
[26] Su, F.; Poh, C. K.; Chen, J. S.; Xu, G.; Wang, D.; Li, Q.; Lin, J.; Lou, X. W. Energy Environ. Sci. 2011, 4, 717.
[27] Zhang, Y.; Xie, J. J.; Han, Y. L.; Li, C. L. Adv. Funct. Mater. 2015, 25, 7300.
[28] Li, T.; Qin, A.; Wang, H.; Wu, M.; Zhang, Y.; Zhang, Y.; Zhang, D.; Xu, F. Electrochim. Acta 2018, 263, 168.
[29] Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7, 1597.
[30] Liu, M.; Fan, H.; Zhuo, O.; Du, X.; Yang, L. Q.; Wang, P.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Chem. Eur. J. 2019, 25, 3843.
[31] Wang, L.; Wang, Z.; Vullum, P. E.; Selbach, S. M.; Svensson, A. M.; Vullum-Bruer, F. Nano Lett. 2018, 18, 763.
[32] Canepa, P.; Gautam, G. S.; Malik, R.; Jayaraman, S.; Rong, Z.; Zavadil, K. R.; Persson, K.; Ceder, G. Chem. Mater. 2015, 27, 3317.
[33] Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. J. Electrochem. Soc. 2008, 155, A103.
[34] Delley, B. J. Chem. Phys. 2000, 113, 7756.
[35] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
文章导航

/