研究评论

新型共价交联纳米胶囊的构筑、调控与功能

  • 闫腾飞 ,
  • 刘俊秋
展开
  • a 杭州师范大学材料与化学化工学院 杭州 310036;
    b 吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012
闫腾飞,1990年出生于河北石家庄,2019年博士毕业于吉林大学化学学院,高分子化学与物理专业,导师为刘俊秋教授.现为中南大学与杭州师范大学联合培养博士后,研究方向为生物超分子材料的制备与性能研究.
刘俊秋,吉林大学化学学院教授,1999年在吉林大学化学系高分子专业获理学博士学位.2002~2003年获洪堡基金资助在德国从事博士后研究.2003年加入吉林大学超分子结构与材料国家重点实验室,担任全职教授.2019年调入杭州师范大学材料与化学化工学院工作,研究方向包括仿生化学、蛋白质组装与功能化、生物材料.

收稿日期: 2020-05-12

  网络出版日期: 2020-05-29

基金资助

项目受科技部重点研发项目基金(Nos.2018YF09101602,2018YFA0901600)资助.

Novel Covalent Cross-linked Nanocapsules: Fabrication, Modulation and Functions

  • Yan Tengfei ,
  • Liu Junqiu
Expand
  • a College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036;
    b College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012

Received date: 2020-05-12

  Online published: 2020-05-29

Supported by

Project supported by Key Research and Development Projects of the Ministry of Science and Technology (Nos. 2018YF09101602, 2018YFA0901600).

摘要

利用共价自组装的方法,将刚性组装基元与柔性链在一定条件下进行横向交联,可以方便地制备出单层高分子纳米胶囊.相比于传统的非共价超分子囊泡,这种新型的共价纳米胶囊具有结构稳定、尺度可控且分散性优异等诸多优点.因此,如何利用化学合成的手段来制备新型的纳米胶囊,并进一步实现对其结构调控和性能的探究具有十分重要的意义.针对这些问题,分别发展了功能化的柱[5]芳烃、四苯乙烯、卟啉、三嗪、苯硼酸酐等不同类型构筑基元,并使之与两端具有活性位点的柔性烷基链在适当的溶剂中进行聚合反应,最终获得了一系列的共价纳米胶囊.通过对其结构的修饰和调控,发现这些功能化的高分子纳米胶囊在光捕获、人工酶、抗菌材料以及药物载体等领域具有诸多潜在应用价值.未来,新型共价高分子纳米胶囊的开发、功能化以及应用有望得到进一步的拓展.

本文引用格式

闫腾飞 , 刘俊秋 . 新型共价交联纳米胶囊的构筑、调控与功能[J]. 化学学报, 2020 , 78(8) : 713 -718 . DOI: 10.6023/A20050164

Abstract

Monomolecular layer polymeric nanocapsules can be easily prepared by the covalent self-assembly of the horizontal cross-linking of rigid building blocks and flexible cross-linker under certain conditions. Compared with the traditional noncovalent supramolecular vesicles, this new type of covalently self-assembled polymeric nanocapsules possess many advantages such as stable structure, controllable size, and excellent dispersibility. Therefore, it is of great significance to fabricate new covalent nanocapsules by means of chemical synthesis to realize their structural control and application exploration. Focusing on these problems, we have developed functionalized pillar[5]arene, tetraphenyl ethylene, porphyrin, triazine, phenylboronic anhydride, etc. to serve as basic building blocks, which were polymerized by flexible alkyl linkers to finally obtain the covalently cross-linked polymeric nanocapsules. Through the structural modification and regulation, we found the functionalized polymeric nanocapsules showed potential application in the field of light harvesting, artificial enzyme, antimicrobial and drug delivery. In the future, more application fields of the covalent polymeric nanocapsules are expected to be further explored.

参考文献

[1] Lee, H.; Kim, W. I.; Youn, W.; Park, T.; Lee, S.; Kim, T. S.; Mano, J. F.; Choi, I. S. Adv. Mater. 2018, 30, 1805091.
[2] Hu, Y.; Yang, Y.; Ning, Y.; Wang, C.; Tong, Z. Colloid. Surface. B 2013, 112, 96.
[3] Sugiura, S.; Nakajima, M.; Tong, J.; Nabetani, H.; Seki, M. J. Colloid Interf. Sci. 2000, 227, 95.
[4] Nandiyanto, A. B. D.; Okuyama, K. Adv. Powder Technol. 2011, 22, 1.
[5] Li, Z. Q.; Qian, J.; Cao, X. L.; Song, X. W.; Wu, F. P. Acta Chim. Sinica 2010, 68, 181. (李振泉, 钱健, 曹绪龙, 宋新旺, 吴飞鹏, 化学学报, 2010, 68, 181.)
[6] Zhou, T. Y.; Lin, F.; Li, Z. T.; Zhao, X. Macromolecules 2013, 46, 7745.
[7] Kim, E.; Kim, D.; Jung, H.; Lee, J.; Paul, S.; Selvapalam, N.; Yang, Y.; Lim, N.; Park, C. G.; Kim, K. Angew. Chem., Int. Ed. 2010, 49, 4405.
[8] Hota, R.; Baek, K.; Yun, G.; Kim, Y.; Jung, H.; Park, K. M.; Yoon, E.; Joo, T.; Kang, J.; Park, C. G.; Bae, S. M.; Ahn, W. S.; Kim, K. Chem. Sci. 2013, 4, 339.
[9] Kim, D.; Kim, E.; Kim, J.; Park, K. M.; Baek, K.; Jung, M.; Ko, Y. H.; Sung, W.; Kim, H. S.; Suh, J. H.; Park, C. G.; Na, O. S.; Lee, D. K.; Lee, K. E.; Han, S. S.; Kim, K. Angew. Chem., Int. Ed. 2007, 46, 3471.
[10] Kim, D.; Kim, E.; Lee, J.; Hong, S.; Sung, W.; Lim, N.; Park, C. G.; Kim, K. J. Am. Chem. Soc. 2010, 132, 9908.
[11] Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y. H.; Gu, G. H.; Suh, J. H.; Park, C. G.; Sung, B. J.; Kim, K. J. Am. Chem. Soc. 2013, 135, 6523.
[12] Lee, J.; Baek, K.; Kim, M.; Yun, G.; Ko, Y. H.; Lee, N. S.; Hwang, I.; Kim, J.; Natarajan, R.; Park, C. G.; Sung, W.; Kim, K. Nat. Chem. 2014, 6, 97.
[13] Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.
[14] Yue, S. Y.; Zhou, Y. J.; Yao, Y.; Xue, M. Acta Chim. Sinica 2014, 72, 1053. (岳诗雨, 周玉娟, 姚勇, 薛敏, 化学学报, 2014, 72, 1053.)
[15] Fu, S.; An, G.; Sun, H.; Luo, Q.; Hou, C.; Xu, J.; Dong, Z.; Liu, J. Chem. Commun. 2017, 53, 9024.
[16] Fan, X.; Tian, R.; Wang, T.; Liu, S.; Wang, L.; Xu, J.; Liu, J.; Ma, M.; Wu, Z. Nanoscale 2018, 10, 22155.
[17] Fan, X.; Tian, R.; Liu, S.; Qiao, S.; Luo, Q.; Yan, T.; Fu, S.; Zhang, X.; Xu, J.; Liu, J. Polym. Chem. 2018, 9, 1160.
[18] Tian, R.; Fan, X.; Liu, S.; Li, F.; Yang, F.; Li, Y.; Luo, Q.; Hou, C.; Xu, J.; Liu, J. Macromol. Rapid Commun. 2020, 41, 1900586.
[19] van Oijen, A. M.; Ketelaars, M.; Köhler, J.; Aartsma, T. J.; Schmidt, J. Science 1999, 285, 400.
[20] Hu, X.; Damjanović, A.; Ritz, T.; Schulten, K. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 5935.
[21] McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature 1995, 374, 517.
[22] Li, H.; Liu, Y.; Huang, T.; Qi, M.; Ni, Y.; Wang, J.; Zheng, Y.; Zhou, Y.; Yan, D. Macromol. Rapid Commun. 2017, 38, 1600818.
[23] Suresh, V. M.; George, S. J.; Maji, T. K. Adv. Funct. Mater. 2013, 23, 5585.
[24] Liu, S.; Jiang, S.; Xu, J.; Huang, Z.; Li, F.; Fan, X.; Luo, Q.; Tian, W.; Liu, J.; Xu, B. Macromol. Rapid Commun. 2019, 40, 1800892.
[25] Nagvenkar, A. P.; Gedanken, A. ACS Appl. Mater. Interfaces 2016, 8, 22301.
[26] Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan X. Nat. Nanotech. 2007, 2, 577.
[27] Feng, D.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H. C. Angew. Chem., Int. Ed. 2012, 51, 10307.
[28] Crofts, T. S.; Gasparrini, A. J.; Dantas, G. Nat. Rev. Microbiol. 2017, 15, 422.
[29] Jennings, M. C.; Minbiole, K. P. C.; Wuest, W. M. ACS Infect. Dis. 2015, 1, 288.
[30] Lienkamp, K.; Madkour, A. E.; Musante, A.; Nelson, C. F.; Nüsslein, K.; Tew, G. N. J. Am. Chem. Soc. 2008, 130, 9836.
[31] Wang, K. K.; He, J. H. Acta Chim. Sinica 2018, 76, 807. (王凯凯, 贺军辉, 化学学报, 2018, 76, 807.)
[32] Zeng, M.; Xu, J.; Luo, Q.; Hou, C.; Qiao, S.; Fu, S.; Fan, X.; Liu, J. Mat. Sci. Eng. C 2020, 108, 110383.
[33] Song, J.; Huang, P.; Duan, H.; Chen, X. Acc. Chem. Res. 2015, 48, 2506.
[34] Fu, S.; Li, F.; Zang, M.; Zhang, Z.; Ji, Y.; Yu, X.; Luo, Q.; Guan, S.; Xu, J.; Liu, J. J. Mater. Chem. B 2019, 7, 4927.
文章导航

/