综述

活性氧响应型抗肿瘤前药研究进展

  • 张留伟 ,
  • 陈麒先 ,
  • 王静云
展开
  • 大连理工大学生物工程学院 大连 116024
张留伟,男,大连理工大学生物化工系在读博士生,目前研究方向为生物纳米材料和抗肿瘤前药的设计、制备及其在肿瘤治疗方面的应用.
陈麒先,男,大连理工大学生物工程学院特聘研究员,师从美国工程院院士、日本东京大学Prof.Kazunori Kataoka (片冈一则教授),曾担任美国麻省理工学院(MIT)化学系(Prof.Jeremiah A.Johnson研究室)博士后研究员,致力于化学、生物、医学交叉学科研究工作,目前研究方向包括纳米医学、高分子自组装、基因治疗等,尤其强调基因/药物递送技术在顽固性癌症以及中枢神经疾病治疗上的应用价值.
王静云,女,教授,博士生导师.2001年毕业于大连理工大学获得博士学位,2002~2004年美国西北大学(Northwestern University)化学系博士后,主要从事活细胞内生物分子可视化荧光探针和生物纳米新材料的研究.

收稿日期: 2020-04-24

  网络出版日期: 2020-06-11

基金资助

项目受国家自然科学基金面上项目(No.21878041)和兴辽英才计划基金项目(XLYC1807184)资助.

Advances in Reactive Oxygen Species Responsive Anti-cancer Prodrugs

  • Zhang Liuwei ,
  • Chen Qixian ,
  • Wang Jingyun
Expand
  • School of Bioengineering, Dalian University of Technology, Dalian 116024

Received date: 2020-04-24

  Online published: 2020-06-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 21878041) and Talent Project of Revitalizing Liaoning (XLYC1807184).

摘要

活性氧(ROS)在机体信号转导和代谢中起着至关重要的作用,而ROS水平的升高与多种病变(癌症和炎症等)息息相关,基于肿瘤组织高水平ROS开发的肿瘤特异杀伤性前药策略,在增强药效和药物选择性方面提供了一种新颖的方法.本综述介绍了目前用于构建抗肿瘤前药的ROS敏感键:芳基硼酸/酯、烷基硫/硒醚、硫缩酮、过氧草酸酯、氨基丙烯酸酯、噻唑烷酮和α-酮酰胺等,并且详叙了基于这些敏感键设计的前药在抗肿瘤方向上的应用,同时探讨了现有ROS响应型前药系统的研究进展和局限性,并对未来的研究方向进行了展望.

本文引用格式

张留伟 , 陈麒先 , 王静云 . 活性氧响应型抗肿瘤前药研究进展[J]. 化学学报, 2020 , 78(7) : 642 -656 . DOI: 10.6023/A20040116

Abstract

Reactive oxygen species (ROS) are categorized as a class of instantaneous intermediate products of oxygen, which are usually produced by a single electron continuous reduction of O2. Examples include hydrogen peroxide (H2O2), superoxide anion (O2-), hydroxyl radical (HO·), hypochlorite radical (OCl-) and singlet oxygen (1O2). The endogenous ROS arise from three major resources:mitochondrial electron transport chain (Mito-ETC), endoplasmic reticulum (ER) and NADPH oxidase (NOX). The produced ROS play vital roles in physiological functions including modulation of functions of proteins, regulation of cell signaling, mediation of inflammation, and elimination of pathogens. However, the cumulative ROS level in vivo could elicit oxidative stress, which is implicated in a multitude of diseases including cancer, autoimmune diseases, inflammation, cardiovascular diseases, neurodegenerative diseases. This abnormal biochemical alteration in tumors has inspired researchers to exploit the relatively high levels of ROS for development of ROS-responsive prodrug systems. In recent years, ROS-responsive prodrug systems based on a spectrum of ROS-sensitive linkers have been designed and developed with aim of precision tumor therapy. Herein, in this review, we would like to illustrate ROS-sensitive linkers developed to date including arylboronic acid or ester, alkyl thioether or selenide, thioketal, peroxalate ester, aminoacrylate, thiazolidinone and α-ketoamide, and elucidate the underlying molecular oxidation mechanism. Furthermore, the design of ROS-responsive prodrugs based on these sensitive linkers and their applications in anti-cancer therapy were reviewed. Additionally, the existing problems and the future research perspectives of prodrug systems were also discussed.

参考文献

[1] Nathan, C.; Ding, A. Cell 2010, 140, 951.
[2] D'Autreaux, B.; Toledano, M. B. Nat. Rev. Mol. Cell Biol. 2007, 8, 813.
[3] Trachootham, D.; Alexandre, J.; Huang, P. Nat. Rev. Drug Discov. 2009, 8, 579.
[4] Schumacker, P. T. Cancer Cell 2015, 27, 156.
[5] Brieger, K.; Schiavone, S.; Miller, F. J., Jr.; Krause, K. H. Swiss Med. Wkly. 2012, 142, w13659.
[6] Costa, A.; Scholer-Dahirel, A.; Mechta-Grigoriou, F. Semin. Cancer Biol. 2014, 25, 23.
[7] Nathan, C.; Cunningham-Bussel, A. Nat. Rev. Immunol. 2013, 13, 349.
[8] Martin, K. R.; Barrett, J. C. Hum. Exp. Toxicol. 2002, 21, 71.
[9] Ahsan, H.; Ali, A.; Ali, R. Clin. Exp. Immunol. 2003, 131, 398.
[10] Andersen, J. K. Nat. Med. 2004, 10, 18.
[11] Haigis, M. C.; Yankner, B. A. Mol. Cell 2010, 40, 333.
[12] Kumar, S. V.; Saritha, G.; Fareedullah, M. Ann. Biol. Res. 2010, 1, 158.
[13] Paravicini, T. M.; Touyz, R. M. Cardiovasc. Res. 2006, 71, 247.
[14] Szatrowski, T. P.; Nathan, C. F. Cancer Res. 1991, 51, 794.
[15] Wellen, K. E.; Hotamisligil, G. S. J. Clin. Invest. 2005, 115, 1111.
[16] Boveris, A.; Alvarez, S.; Bustamante, J.; Valdez, L. Methods Enzymol. 2002, 349, 280.
[17] Giorgio, M.; Trinei, M.; Migliaccio, E.; Pelicci, P. G. Nat. Rev. Mol. Cell Biol. 2007, 8, 722.
[18] Mueller, S. Biol. Med. 2000, 29, 410.
[19] Stone, J. R.; Yang, S. Antioxid Redox Sign. 2006, 8, 243.
[20] Du, Z.; Zhang, Y.; Ye, J.; Xu, H.; Lang, M. Acta Chim. Sinica 2015, 73, 349. (杜征臻, 张琰, 叶金海, 徐衡, 郎美东, 化学学报, 2015, 73, 349.)
[21] Wu, C.; Xie, J.; Quan, J.; Zhu, L. Acta Chim. Sinica 2011, 69, 843. (吴承尧, 谢建刚, 权静, 朱利民, 化学学报, 2011, 69, 843.)
[22] Hou, J.; Li, K.; Qin, C.; Yu, X. Chin. J. Org. Chem. 2018, 38, 612. (后际挺, 李坤, 覃彩芹, 余孝其, 有机化学, 2018, 38, 612.)
[23] Jiao, C.; Liu, Y.; Lu, W.; Zhang, P.; Wang, Y. Chin. J. Org. Chem. 2019, 39, 591. (矫春鹏, 刘媛媛, 路文娟, 张平平, 王延风, 有机化学, 2019, 39, 591.)
[24] Major Jourden, J. L.; Cohen, S. M. Angew. Chem. Int. Ed. 2010, 49, 6795.
[25] Kuang, Y.; Balakrishnan, K.; Gandhi, V.; Peng, X. J. Am. Chem. Soc. 2011, 133, 19278.
[26] Chen, W.; Fan, H.; Balakrishnan, K.; Wang, Y.; Sun, H.; Fan, Y.; Gandhi, V.; Arnold, L. A.; Peng, X. J. Med. Chem. 2018, 61, 9132.
[27] Chen, W.; Balakrishnan, K.; Kuang, Y.; Han, Y.; Fu, M.; Gandhi, V.; Peng, X. J. Med. Chem. 2014, 57, 4498.
[28] Cao, S.; Wang, Y.; Peng, X. Chemistry 2012, 18, 3850.
[29] Wang, Y.; Fan, H.; Balakrishnan, K.; Lin, Z.; Cao, S.; Chen, W.; Fan, Y.; Guthrie, Q. A.; Sun, H.; Teske, K. A.; Gandhi, V.; Arnold, L. A.; Peng, X. Eur J. Med. Chem. 2017, 133, 197.
[30] Chen, W.; Han, Y.; Peng, X. Chemistry 2014, 20, 7410.
[31] Cao, S.; Wang, Y.; Peng, X. J. Org. Chem. 2014, 79, 501.
[32] Daum, S.; Reshetnikov, M. S. V.; Sisa, M.; Dumych, T.; Lootsik, M. D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann, M.; Sellner, L.; Mokhir, A. Angew. Chem. Int. Ed. 2017, 56, 15545.
[33] Schikora, M.; Reznikov, A.; Chaykovskaya, L.; Sachinska, O.; Polyakova, L.; Mokhir, A. Bioorg. Med. Chem. Lett. 2015, 25, 3447.
[34] Marzenell, P.; Hagen, H.; Sellner, L.; Zenz, T.; Grinyte, R.; Pavlov, V.; Daum, S.; Mokhir, A. J. Med. Chem. 2013, 56, 6935.
[35] Hagen, H.; Marzenell, P.; Jentzsch, E.; Wenz, F.; Veldwijk, M. R.; Mokhir, A. J. Med. Chem. 2012, 55, 924.
[36] Daum, S.; Chekhun, V. F.; Todor, I. N.; Lukianova, N. Y.; Shvets, Y. V.; Sellner, L.; Putzker, K.; Lewis, J.; Zenz, T.; de Graaf, I. A.; Groothuis, G. M.; Casini, A.; Zozulia, O.; Hampel, F.; Mokhir, A. J. Med. Chem. 2015, 58, 2015.
[37] Daum, S.; Babiy, S.; Konovalova, H.; Hofer, W.; Shtemenko, A.; Shtemenko, N.; Janko, C.; Alexiou, C.; Mokhir, A. J. Inorg. Biochem. 2018, 178, 9.
[38] Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Acta Chim. Sinica 2017, 75, 538. (穆毅, 贾法龙, 艾智慧, 张礼知, 化学学报, 2017, 75, 538.)
[39] Reshetnikov, V.; Daum, S.; Mokhir, A. Chemistry 2017, 23, 5678.
[40] Reshetnikov, V.; Daum, S.; Janko, C.; Karawacka, W.; Tietze, R.; Alexiou, C.; Paryzhak, S.; Dumych, T.; Bilyy, R.; Tripal, P.; Schmid, B.; Palmisano, R.; Mokhir, A. Angew. Chem. Int. Ed. 2018, 57, 11943.
[41] Reshetnikov, V.; Arkhypov, A.; Julakanti, P. R.; Mokhir, A. Dalton Trans. 2018, 47, 6679.
[42] Ai, Y.; Obianom, O. N.; Kuser, M.; Li, Y.; Shu, Y.; Xue, F. ACS Med. Chem. Lett. 2019, 10, 127.
[43] Bhagat, S. D.; Singh, U.; Mishra, R. K.; Srivastava, A. ChemMedChem 2018, 13, 2073.
[44] Biswas, S.; Das, J.; Barman, S.; Rao Pinninti, B.; T, K. M.; Singh, N. D. P. ACS Appl. Mater. Inter. 2017, 9, 28180.
[45] Kumar, R.; Han, J.; Lim, H. J.; Ren, W. X.; Lim, J. Y.; Kim, J. H.; Kim, J. S. J. Am. Chem. Soc. 2014, 136, 17836.
[46] Kim, E. J.; Bhuniya, S.; Lee, H.; Kim, H. M.; Cheong, C.; Maiti, S.; Hong, K. S.; Kim, J. S. J. Am. Chem. Soc. 2014, 136, 13888.
[47] Wang, L.; Xie, S.; Ma, L.; Chen, Y.; Lu, W. Eur. J. Med. Chem. 2016, 116, 84.
[48] Liu, H. W.; Hu, X. X.; Li, K.; Liu, Y.; Rong, Q.; Zhu, L.; Yuan, L.; Qu, F. L.; Zhang, X. B.; Tan, W. Chem. Sci. 2017, 8, 7689.
[49] Gao, X.; Cao, J.; Song, Y.; Shu, X.; Liu, J.; Sun, J. Z.; Liu, B.; Tang, B. Z. RSC Adv. 2018, 8, 10975.
[50] Matsushita, K.; Okuda, T.; Mori, S.; Konno, M.; Eguchi, H.; Asai, A.; Koseki, J.; Iwagami, Y.; Yamada, D.; Akita, H.; Asaoka, T.; Noda, T.; Kawamoto, K.; Gotoh, K.; Kobayashi, S.; Kasahara, Y.; Morihiro, K.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H.; Obika, S. ChemMedChem 2019, 14, 1384.
[51] Peiro Cadahia, J.; Bondebjerg, J.; Hansen, C. A.; Previtali, V.; Hansen, A. E.; Andresen, T. L.; Clausen, M. H. J. Med. Chem. 2018, 61, 3503.
[52] Previtali, V.; Petrovic, K.; Peiro Cadahia, J.; Troelsen, N. S.; Clausen, M. H. Bioorg. Med. Chem. 2020, 28, 115247.
[53] Xu, X.; Liu, K.; Jiao, B.; Luo, K.; Ren, J.; Zhang, G.; Yu, Q.; Gan, Z. J. Control. Release 2020.
[54] Li, M.; Li, S.; Chen, H.; Hu, R.; Liu, L.; Lv, F.; Wang, S. ACS Appl. Mater. Inter. 2016, 8, 42.
[55] Pei, Y.; Li, M.; Hou, Y.; Hu, Y.; Chu, G.; Dai, L.; Li, K.; Xing, Y.; Tao, B.; Yu, Y.; Xue, C.; He, Y.; Luo, Z.; Cai, K. Nanoscale 2018, 10, 11418.
[56] Luan, T.; Cheng, L.; Cheng, J.; Zhang, X.; Cao, Y.; Zhang, X.; Cui, H.; Zhao, G. ACS Appl. Mater. Inter. 2019, 11, 25654.
[57] Lin, M.; Guo, W.; Zhang, Z.; Zhou, Y.; Chen, J.; Wang, T.; Zhong, X.; Lu, Y.; Yang, Q.; Wei, Q.; Han, M.; Xu, D.; Gao, J. Mol. Pharm. 2020, 17, 499.
[58] Luo, C. Q.; Zhou, Y. X.; Zhou, T. J.; Xing, L.; Cui, P. F.; Sun, M.; Jin, L.; Lu, N.; Jiang, H. L. J. Control. Release 2018, 274, 56.
[59] Dong, C.; Zhou, Q.; Xiang, J.; Liu, F.; Zhou, Z.; Shen, Y. J. Control. Release 2020, 321, 529.
[60] Gao, F.; Wang, F.; Nie, X.; Zhang, Z.; Chen, G.; Xia, L.; Wang, L. H.; Wang, C. H.; Hao, Z. Y.; Zhang, W. J.; Hong, C. Y.; You, Y. Z. New J. Chem. 2020, 44, 3478.
[61] Wang, M.; Sun, S.; Neufeld, C. I.; Perez-Ramirez, B.; Xu, Q. Angew. Chem. Int. Ed. 2014, 53, 13444.
[62] Li, M.; Zhao, L.; Zhang, T.; Shu, Y.; He, Z.; Ma, Y.; Liu, D.; Wang, Y. Acta Pharm. Sin. B 2019, 9, 421.
[63] Luo, C.; Sun, J.; Liu, D.; Sun, B.; Miao, L.; Musetti, S.; Li, J.; Han, X.; Du, Y.; Li, L.; Huang, L.; He, Z. Nano Lett. 2017, 16, 5401.
[64] Sun, B.; Chen, Y.; Yu, H.; Wang, C.; Zhang, X.; Zhao, H.; Chen, Q.; He, Z.; Luo, C.; Sun, J. Acta Biomater. 2019, 92, 219.
[65] Luo, C.; Sun, B.; Wang, C.; Zhang, X.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H.; Sun, M.; Li, Z.; Zhang, H.; Kan, Q.; Wang, Y.; He, Z.; Sun, J. J. Control. Release 2019, 302, 79.
[66] Wang, K.; Yang, B.; Ye, H.; Zhang, X.; Song, H.; Wang, X.; Li, N.; Wei, L.; Wang, Y.; Zhang, H.; Kan, Q.; He, Z.; Wang, D.; Sun, J. ACS Appl. Mater. Inter. 2019, 11, 18914.
[67] Zhang, D.; Yang, J.; Guan, J.; Yang, B.; Zhang, S.; Sun, M.; Yang, R.; Zhang, T.; Zhang, R.; Kan, Q.; Zhang, H.; He, Z.; Shang, L.; Sun, J. Biomater. Sci. 2018, 6, 2360.
[68] Yang, J.; Lv, Q.; Wei, W.; Yang, Z.; Dong, J.; Zhang, R.; Kan, Q.; He, Z.; Xu, Y. Drug Deliv. 2018, 25, 807.
[69] Yang, B.; Wang, K.; Zhang, D.; Ji, B.; Zhao, D.; Wang, X.; Zhang, H.; Kan, Q.; He, Z.; Sun, J. RSC Adv. 2019, 9, 9260.
[70] Xu, C.; Sun, Y.; Qi, Y.; Yu, Y.; He, Y.; Hu, M.; Hu, Q.; Wu, T.; Zhang, D.; Shang, L.; Deng, H.; Zhang, Z. J. Control. Release 2018, 284, 224.
[71] Wang, J.; Sun, X.; Mao, W.; Sun, W.; Tang, J.; Sui, M.; Shen, Y.; Gu, Z. Adv. Mater. 2013, 25, 3670.
[72] Sharma, A.; Lee, M. G.; Won, M.; Koo, S.; Arambula, J. F.; Sessler, J. L.; Chi, S. G.; Kim, J. S. J. Am. Chem. Soc. 2019, 141, 15611.
[73] Yin, W.; Ke, W.; Lu, N.; Wang, Y.; Japir, A.; Mohammed, F.; Wang, Y.; Pan, Y.; Ge, Z. Biomacromolecules 2020, 21, 921.
[74] Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. J Am. Chem. Soc. 2010, 132, 442.
[75] Cao, W.; Gu, Y.; Li, T.; Xu, H. Chem. Commun. (Camb) 2015, 51, 7069.
[76] Liu, J.; Pang, Y.; Zhu, Z.; Wang, D.; Li, C.; Huang, W.; Zhu, X.; Yan, D. Biomacromolecules 2013, 14, 1627.
[77] Ma, N.; Li, Y.; Ren, H.; Xu, H.; Li, Z.; Zhang, X. Polym. Chem. 2010, 1, 1069.
[78] Ma, N.; Xu, H.; An, L.; Li, J.; Sun, Z.; Zhang, X. Langmuir 2011, 27, 5874.
[79] Tian, Y.; Zheng, J.; Tang, X.; Ren, Q.; Wang, Y.; Yang, W. Part. Part. Syst. Charact. 2015, 32, 547.
[80] Li, T.; Yi, Y.; Xu, H. Acta Chim. Sinica 2014, 72, 1079. (李天予, 易宇, 许华平, 化学学报, 2014, 72, 1079.)
[81] Pan, Z.; Zhang, J.; Ji, K.; Chittavong, V.; Ji, X.; Wang, B. Org. Lett. 2018, 20, 8.
[82] Yang, B.; Wang, K.; Zhang, D.; Sun, B.; Ji, B.; Wei, L.; Li, Z.; Wang, M.; Zhang, X.; Zhang, H.; Kan, Q.; Luo, C.; Wang, Y.; He, Z.; Sun, J. Biomater. Sci. 2018, 6, 2965.
[83] Li, Y.; Li, Y.; Ji, W.; Lu, Z.; Liu, L.; Shi, Y.; Ma, G.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 4164.
[84] Ganguly, N.; Barik, S. Synthesis 2009, 2009, 1393.
[85] Ling, X.; Zhang, S.; Shao, P.; Wang, P.; Ma, X.; Bai, M. Tetrahedron Lett. 2015, 56, 5242.
[86] Wilson, D. S.; Dalmasso, G.; Wang, L.; Sitaraman, S. V.; Merlin, D.; Murthy, N. Nat. Mater. 2010, 9, 923.
[87] Xu, C.; Song, R.; Lu, P.; Chen, J.; Zhou, Y.; Shen, G.; Jiang, M.; Zhang, W. Int. J. Nanomed. 2020, 15, 65.
[88] Li, S.; Xie, A.; Li, H.; Zou, X.; Zhang, Q. J. Control. Release 2019, 316, 66.
[89] Xu, L.; Yang, Y.; Zhao, M.; Gao, W.; Zhang, H.; Li, S.; He, B.; Pu, Y. J. Mater. Chem. B 2018, 6, 1076.
[90] Wang, Y.; Zhang, Y.; Ru, Z.; Song, W.; Chen, L.; Ma, H.; Sun, L. J. Nanobiotechnol. 2019, 17, 91.
[91] Zhao, Z.; Wang, W.; Li, C.; Zhang, Y.; Yu, T.; Wu, R.; Zhao, J.; Liu, Z.; Liu, J.; Yu, H. Adv. Funct. Mater. 2019, 29, 1909013.
[92] Zhou, F.; Feng, B.; Wang, T.; Wang, D.; Cui, Z.; Wang, S.; Ding, C.; Zhang, Z.; Liu, J.; Yu, H.; Li, Y. Adv. Funct. Mater. 2017, 27, 1703674.
[93] Yuan, Y.; Liu, J.; Liu, B. Angew. Chem. Int. Ed. 2014, 53, 7163.
[94] Xu, X.; Saw, P. E.; Tao, W.; Li, Y.; Ji, X.; Bhasin, S.; Liu, Y.; Ayyash, D.; Rasmussen, J.; Huo, M.; Shi, J.; Farokhzad, O. C. Adv. Mater. 2017, 29, 1700141.
[95] Lamb, B. M.; Barbas, C. F., 3rd Chem. Commun. (Camb) 2015, 51, 3196.
[96] Wang, G.; Zhou, Z.; Zhao, Z.; Li, Q.; Wu, Y.; Yan, S.; Shen, Y.; Huang, P. ACS Nano 2020, 14, 4890.
[97] Ke, W.; Lu, N.; Japir, A.; Zhou, Q.; Xi, L.; Wang, Y.; Dutta, D.; Zhou, M.; Pan, Y.; Ge, Z. J. Control. Release 2020, 318, 67.
[98] Yin, W.; Ke, W.; Chen, W.; Xi, L.; Zhou, Q.; Mukerabigwi, J. F.; Ge, Z. Biomaterials 2019, 195, 63.
[99] Ke, W.; Li, J.; Mohammed, F.; Wang, Y.; Tou, K.; Liu, X.; Wen, P.; Kinoh, H.; Anraku, Y.; Chen, H.; Kataoka, K.; Ge, Z. ACS Nano 2019, 13, 2357.
[100] Wang, S.; Yu, G.; Wang, Z.; Jacobson, O.; Lin, L. S.; Yang, W.; Deng, H.; He, Z.; Liu, Y.; Chen, Z. Y.; Chen, X. Angew. Chem. Int. Ed. 2019, 58, 14758.
[101] Han, K.; Zhu, J. Y.; Wang, S. B.; Li, Z. H.; Cheng, S. X.; Zhang, X. Z. J. Mater. Chem. B 2015, 3, 8065.
[102] Pei, P.; Sun, C.; Tao, W.; Li, J.; Yang, X.; Wang, J. Biomaterials 2019, 188, 74.
[103] Phua, S. Z. F.; Xue, C.; Lim, W. Q.; Yang, G.; Chen, H.; Zhang, Y.; Wijaya, C. F.; Luo, Z.; Zhao, Y. Chem. Mater. 2019, 31, 3349.
[104] Xia, X.; Yang, X.; Huang, P.; Yan, D. ACS Appl. Mater. Inter. 2020, 12, 18301.
[105] Shi, S.; Zhang, L.; Zhu, M.; Wan, G.; Li, C.; Zhang, J.; Wang, Y.; Wang, Y. ACS Appl. Mater. Inter. 2018, 10, 29260.
[106] Ling, X.; Zhang, S.; Liu, Y.; Bai, M. J. Biomed. Opt. 2018, 23, 1.
[107] Liu, L. H.; Qiu, W. X.; Li, B.; Zhang, C.; Sun, L. F.; Wan, S. S.; Rong, L.; Zhang, X. Z. Adv. Funct. Mater. 2016, 26, 6257.
[108] Li, J.; Li, Y.; Wang, Y.; Ke, W.; Chen, W.; Wang, W.; Ge, Z. Nano Lett. 2017, 17, 6983.
[109] Kwon, J.; Kim, J.; Park, S.; Khang, G.; Kang, P. M.; Lee, D. Biomacromolecules 2013, 14, 1618.
[110] Qiao, Z.; Liu, H. Y.; Zha, J. C.; Mao, X. X.; Yin, J. Polym. Chem. 2019, 10, 4305.
[111] Berwin Singh, S. V.; Jung, E.; Noh, J.; Yoo, D.; Kang, C.; Hyeon, H.; Kim, G. W.; Khang, G.; Lee, D. Nanomedicine 2019, 16, 45.
[112] Höcherl, A.; Jäger, E.; Jäger, A.; Hrubý, M.; Konefał, R.; Janoušková, O.; Spěváček, J.; Jiang, Y.; Schmidt, P. W.; Lodge, T. P.; Štěpánek, P. Polym. Chem. 2017, 8, 1999.
[113] Ou, K.; Kang, Y.; Chen, L.; Zhang, X.; Chen, X.; Zheng, Y.; Wu, J.; Guan, S. Biomater. Sci. 2019, 7, 2491.
[114] Wang, S.; Wang, Z.; Yu, G.; Zhou, Z.; Jacobson, O.; Liu, Y.; Ma, Y.; Zhang, F.; Chen, Z.; Chen, X. Adv. Sci. 2019, 6, 1700141.
[115] Li, J.; Ke, W.; Wang, L.; Huang, M.; Yin, W.; Zhang, P.; Chen, Q.; Ge, Z. J. Control. Release 2016, 225, 64.
[116] Dai, L.; Li, X.; Duan, X.; Li, M.; Niu, P.; Xu, H.; Cai, K.; Yang, H. Adv. Sci. 2019, 6, 1801807.
[117] Bio, M.; Nkepang, G.; You, Y. Chem. Commun. (Camb) 2012, 48, 6517.
[118] Hossion, A. M.; Bio, M.; Nkepang, G.; Awuah, S. G.; You, Y. ACS Med. Chem. Lett. 2013, 4, 124.
[119] Bio, M.; Rajaputra, P.; Nkepang, G.; You, Y. J. Med. Chem. 2014, 57, 3401.
[120] Rajaputra, P.; Bio, M.; Nkepang, G.; Thapa, P.; Woo, S.; You, Y. Bioorg. Med. Chem. 2016, 24, 1540.
[121] Thapa, P.; Li, M.; Bio, M.; Rajaputra, P.; Nkepang, G.; Sun, Y.; Woo, S.; You, Y. J. Med. Chem. 2016, 59, 3204.
[122] Bio, M.; Rajaputra, P.; Lim, I.; Thapa, P.; Tienabeso, B.; Hurst, R. E.; You, Y. Chem. Commun. (Camb) 2017, 53, 1884.
[123] Li, M.; Thapa, P.; Rajaputra, P.; Bio, M.; Peer, C. J.; Figg, W. D.; You, Y.; Woo, S. J. Pharmacokinet. Pharmacodyn. 2017, 44, 521.
[124] Bio, M.; Rajaputra, P.; Nkepang, G.; Awuah, S. G.; Hossion, A. M.; You, Y. J. Med. Chem. 2013, 56, 3936.
[125] Nkepang, G.; Bio, M.; Rajaputra, P.; Awuah, S. G.; You, Y. Bioconjug. Chem. 2014, 25, 2175.
[126] Thapa, P.; Li, M.; Karki, R.; Bio, M.; Rajaputra, P.; Nkepang, G.; Woo, S.; You, Y. ACS Omega 2017, 2, 6349.
[127] Perez, C.; Monserrat, J. P.; Chen, Y.; Cohen, S. M. Chem. Commun. (Camb) 2015, 51, 7116.
[128] Andersen, N. S.; Peiro Cadahia, J.; Previtali, V.; Bondebjerg, J.; Hansen, C. A.; Hansen, A. E.; Andresen, T. L.; Clausen, M. H. Eur. J. Med. Chem. 2018, 156, 738.
[129] Meng, T.; Han, J.; Zhang, P.; Hu, J.; Fu, J.; Yin, J. Chem. Sci. 2019, 10, 7156.
文章导航

/