综述

水稳定性金属有机框架材料的水吸附性质与应用

  • 张晋维 ,
  • 李平 ,
  • 张馨凝 ,
  • 马小杰 ,
  • 王博
展开
  • 北京理工大学 化学与化工学院 北京 100081
张晋维,北京理工大学硕士研究生.2017年本科毕业于北京理工大学,现于北京理工大学攻读硕士学位.主要研究领域为MOFs材料的水吸附性质以及湿度调节性能.
李平,北京理工大学博士研究生.2013年硕士毕业于河南大学,现于北京理工大学攻读博士学位.主要研究领域为MOFs材料的光催化杀菌机制与应用研究.
张馨凝,北京理工大学博士研究生.2017年本科毕业于北京理工大学,现于北京理工大学攻读博士学位.主要研究领域为新型铜基、锌基、铁基、锆基-MOFs材料的生长过程与吸附性能研究.
马小杰,北京理工大学化学与化工学院预聘助理教授,于兰州大学化学与化工学院取得本科与硕士学位,中科院化学研究所获得博士学位.主要从事多孔材料的环境催化研究工作.
王博,北京理工大学化学与化工学院教授,2004年于北京大学化学与分子工程学院获理学学士学位,2006年于美国密歇根大学获化学材料学硕士学位,2008年于美国加州大学洛杉矶分校获化学材料学博士学位.王博教授主要从事新型纳米多孔材料、开放框架聚合物理论与设计及其在关键分离过程、环境防护等领域的应用研究.

收稿日期: 2020-05-09

  网络出版日期: 2020-06-19

基金资助

项目受国家自然科学基金(Nos.21625102,21801017,21490570,21674012)、北京市科委科技计划(No.Z181100004418001)和北京理工大学科研基金资助.

Water Adsorption Properties and Applications of Stable Metal-organic Frameworks

  • Zhang Jinwei ,
  • Li Ping ,
  • Zhang Xinning ,
  • Ma Xiaojie ,
  • Wang Bo
Expand
  • School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081

Received date: 2020-05-09

  Online published: 2020-06-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21625102, 21801017, 21490570, 21674012), Beijing Municipal Science and Technology Project (No. Z181100004418001), and Beijing Institute of Technology Research Fund Program.

摘要

金属有机框架材料(metal-organic frameworks,MOFs)因具有高比表面积、高孔隙率以及可调的孔结构及孔内环境,在气体吸附、分离以及催化等方面展现出巨大应用潜力.由于水蒸气广泛存在于空气和各类工业气体中,深入理解MOFs与水蒸气之间相互作用机制,并开发具备高水稳定性以及水蒸气吸附与脱附行为可调的MOFs,不仅具有显著的科学意义,而且对推动MOFs的实际应用具有重要的现实意义.本综述将围绕以下内容展开论述:高水稳定性MOFs的设计规律;MOFs对水蒸气的吸附/脱附行为;吸水MOFs在工业气体干燥、沙漠取水、吸附式热泵以及室内湿度调节等领域的应用.

本文引用格式

张晋维 , 李平 , 张馨凝 , 马小杰 , 王博 . 水稳定性金属有机框架材料的水吸附性质与应用[J]. 化学学报, 2020 , 78(7) : 597 -612 . DOI: 10.6023/A20050153

Abstract

Metal-organic frameworks (MOFs), featuring the ultrahigh surface area, high porosity, tunable geometrical and chemical properties, show potential applications in gas adsorption/separation, heterogenous catalysis, etc. As the ubiquity of water vapor in the ambient environment and industrial gas streams, it is necessary to study on interaction mechanism between MOFs and water molecules and develop highly water-stable MOFs with desirable water adsorption/desorption behaviors. It not only has the scientific significance, but also great importance in promoting the practical applications of MOFs. Given the tailorable abilities of pore size, pore volume, cavity hydrophilicity and water stability, MOFs provide unprecedented advantages to explore the well-defined porous sorbents in molecular level, which facilitates the realization of reversible water vapor uptake and release at expected relative pressure and temperature together with high working capacity. For now, a wide range of hydrolytically stable MOFs including high-valence metal (e.g. Cr3+, Al3+, Zr4+, Ti4+) based frameworks have emerged as the advanced and promising porous sorbents for energy efficient applications, by utilizing water as eco-friendly adsorbate media and renewable heat. This review focuses on the following aspects:(1) the degradation mechanism of MOFs in liquid phase of water and the design concepts of hydrolytically stable MOFs by modulating their coordination bond based on the Pearson' hard/soft acid/base principle; (2) the physical or chemical water ad/desorption properties of MOFs; (3) the classification of numerous MOFs sorbents and conventional desiccants based on their hydrophilicity, which is approximately reflected by the relative humidity (RH) value of the inflection points (the RH where the steep uptake starts) in isotherms; (4) a variety of water adsorption-based applications of MOFs such as industrial gas dehydration, drinking water harvesting in the desert area, adsorption-based heat pump and indoor humidity regulation. Finally, the research priorities and development outlook are summarized and the future challenge with respect to water adsorption-based applications for the next-generation MOFs are outlined.

参考文献

[1] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
[2] Honicke, I. M.; Senkovska, I.; Bon, V.; Baburin, I. A.; Bonisch, N.; Raschke, S.; Evans, J. D.; Kaskel, S. Angew. Chem., Int. Ed. 2018, 57, 13780.
[3] Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
[4] Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43.
[5] Duan, J.; Pan, Y.; Liu, G.; Jin, W. Curr. Opin. Chem. Eng. 2018, 20, 122.
[6] Hou, J.; Zhang, H.; Simon, G. P.; Wang, H. Adv. Mater. 2019, e1902009.
[7] Li, L. B.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S. C.; Wu, H.; Li, J. P.; Zhou, W.; Chen, B. L. Science 2018, 362, 443.
[8] Lin, R. B.; Li, L.; Zhou, H. L.; Wu, H.; He, C.; Li, S.; Krishna, R.; Li, J.; Zhou, W.; Chen, B. Nat. Mater. 2018, 17, 1128.
[9] Silva, P.; Vilela, S. M. F.; Tome, J. P. C.; Paz, F. A. A. Chem. Soc. Rev. 2015, 44, 6774.
[10] Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X.-T.; Xu, J.; Bu, X.-H. Chin. J. Chem. 2019, 37, 871.
[11] Zhang, X.; Lin, R. B.; Wang, J.; Wang, B.; Liang, B.; Yildirim, T.; Zhang, J.; Zhou, W.; Chen, B. L. Adv. Mater. 2020, 32, 1907995.
[12] Xue, D. X.; Wang, Q.; Bai, J. F. Coord. Chem. Rev. 2019, 378, 2.
[13] Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783.
[14] Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Science 2017, 356, 731.
[15] Xiao, J. D.; Jiang, H. L. Acc. Chem. Res. 2019, 52, 356.
[16] Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Angew. Chem., Int. Ed. 2016, 55, 5414.
[17] Li, R.; Zhang, W.; Zhou, K. Adv. Mater. 2018, 30, e1705512.
[18] Li, D.; Kassymova, M.; Cai, X.; Zang, S.-Q.; Jiang, H.-L. Coord. Chem. Rev. 2020, 412, 213262.
[19] Guo, X.; Chen, X.; Su, D.; Liang, C. Acta Chim. Sinica 2018, 76, 22(in Chinese). (郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.)
[20] Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
[21] Ding, M.; Shi, W. H.; Guo, L.; Leong, Z. Y.; Baji, A.; Yang, H. Y. J. Mater. Chem. A 2017, 5, 6113.
[22] Li, X.; Liu, Y. X.; Wang, J.; Gascon, J.; Li, J. S.; Van der Bruggen, B. Chem. Soc. Rev. 2017, 46, 7124.
[23] Wang, H.; Rassu, P.; Wang, X.; Li, H.; Wang, X.; Wang, X.; Feng, X.; Yin, A.; Li, P.; Jin, X.; Chen, S. L.; Ma, X.; Wang, B. Angew. Chem., Int. Ed. 2018, 57, 16416.
[24] Islamoglu, T.; Chen, Z.; Wasson, M. C.; Buru, C. T.; Kirlikovali, K. O.; Afrin, U.; Mian, M. R.; Farha, O. K. Chem. Rev. 2020. DOI:10.1021/acs.chemrev.9b00828.
[25] Kalaj, M.; Denny, M. S., Jr.; Bentz, K. C.; Palomba, J. M.; Cohen, S. M. Angew. Chem., Int. Ed. 2019, 58, 2336.
[26] Bian, L.; Li, W.; Wei, Z.; Liu, X.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese). (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
[27] Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758(in Chinese). (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
[28] Sun, Y.; Qi, Y.; Shen, Y.; Jing, C.; Chen, X.; Wang, X. Acta Chim. Sinica 2020, 78, 147(in Chinese). (孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78, 147.)
[29] Wang, C.; Liu, X.; Keser Demir, N.; Chen, J. P.; Li, K. Chem. Soc. Rev. 2016, 45, 5107.
[30] Zhang, S. Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J. J. Am. Chem. Soc. 2018, 140, 12545.
[31] AbdulHalim, R. G.; Bhatt, P. M.; Belmabkhout, Y.; Shkurenko, A.; Adil, K.; Barbour, L. J.; Eddaoudi, M. J. Am. Chem. Soc. 2017, 139, 10715.
[32] Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 4369.
[33] Wang, S.; Lee, J. S.; Wahiduzzaman, M.; Park, J.; Muschi, M.; Martineau-Corcos, C.; Tissot, A.; Cho, K. H.; Marrot, J.; Shepard, W.; Maurin, G.; Chang, J. S.; Serre, C. Nat. Energy 2018, 3, 985.
[34] Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Science 2017, 356, 430.
[35] Fathieh, F.; Kalmutzki, M. J.; Kapustin, E. A.; Waller, P. J.; Yang, J.; Yaghi, O. M. Sci. Adv. 2018, 4, eaat3198.
[36] Hanikel, N.; Prevot, M. S.; Fathieh, F.; Kapustin, E. A.; Lyu, H.; Wang, H.; Diercks, N. J.; Glover, T. G.; Yaghi, O. M. ACS Cent Sci. 2019, 5, 1699.
[37] Xu, J.; Li, T.; Chao, J.; Wu, S.; Yan, T.; Li, W.; Cao, B.; Wang, R. Angew. Chem., Int. Ed. 2020, 59, 5202.
[38] Hanikel, N.; Prevot, M. S.; Yaghi, O. M. Nat. Nanotechnol. 2020, 15, 348.
[39] de Lange, M. F.; Verouden, K. J.; Vlugt, T. J.; Gascon, J.; Kapteijn, F. Chem. Rev. 2015, 115, 12205.
[40] Lenzen, D.; Bendix, P.; Reinsch, H.; Fröhlich, D.; Kummer, H.; Möllers, M.; Hügenell, P. P. C.; Gläser, R.; Henninger, S.; Stock, N. Adv. Mater. 2018, 30, 1705869.
[41] Cao, B. Y.; Tu, Y. D.; Wang, R. Z. iScience 2019, 15, 502.
[42] Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Nat. Rev. Mater. 2016, 1, 1.
[43] Bai, Y.; Dou, Y.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Chem. Soc. Rev. 2016, 45, 2327.
[44] Lin, R.-B.; Xiang, S.; Li, B.; Cui, Y.; Qian, G.; Zhou, W.; Chen, B. Coord. Chem. Rev. 2019, 384, 21.
[45] Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.
[46] Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509.
[47] Yaghi, O. M.; Li, G. M.; Li, H. L. Nature 1995, 378, 703.
[48] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
[49] Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.
[50] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
[51] Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176.
[52] Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Chem. Soc. Rev. 2014, 43, 5594.
[53] Wu, Y.; Lv, Z.; Zhou, X.; Peng, J.; Tang, Y.; Li, Z. Chem. Eng. J. 2019, 355, 815.
[54] Devic, T.; Serre, C. Chem. Soc. Rev. 2014, 43, 6097.
[55] Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H. C. Adv. Mater. 2018, 30, e1704303.
[56] Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louer, D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519.
[57] Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040.
[58] Hong, D.-Y.; Hwang, Y. K.; Serre, C.; Férey, G.; Chang, J.-S. Adv. Funct. Mater. 2009, 19, 1537.
[59] Serre, C.; Mellot-Draznieks, C.; Surble, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Science 2007, 315, 1828.
[60] Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem. Eur. J. 2004, 10, 1373.
[61] Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Elkaim, E.; Vimont, A. Dalton Trans. 2009, 2241.
[62] Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; Férey, G.; Stock, N. Inorg. Chem. 2008, 47, 7568.
[63] Vimont, A.; Goupil, J. M.; Lavalley, J. C.; Daturi, M.; Surble, S.; Serre, C.; Millange, F.; Férey, G.; Audebrand, N. J. Am. Chem. Soc. 2006, 128, 3218.
[64] Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G. r.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F. Chem. Mater. 2009, 21, 5695.
[65] Reinsch, H.; Stock, N. CrystEngComm 2013, 15, 544.
[66] Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Férey, G. Chem. Commun. 2007, 2820.
[67] Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Chem. Rev. 2012, 112, 1001.
[68] Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186.
[69] Jiang, X.; Li, S. W.; Bai, Y. P.; Shao, L. J. Mater. Chem. A 2019, 7, 10898.
[70] Xiong, Y.; Dong, J.; Huang, Z. Q.; Xin, P.; Chen, W.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z.; Ye, J.; Wei, X.; Cao, R.; Gu, L.; Sun, S.; Zhuang, L.; Chen, X.; Yang, H.; Chen, C.; Peng, Q.; Chang, C. R.; Wang, D.; Li, Y. Nat. Nanotechnol. 2020, 15, 390.
[71] Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Adv. Energy Mater. 2020, 10, 21.
[72] Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Nat. Commun. 2019, 10, 2177.
[73] Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148.
[74] Kalmutzki, M. J.; Diercks, C. S.; Yaghi, O. M. Adv. Mater. 2018, 30, e1704304.
[75] Burtch, N. C.; Jasuja, H.; Walton, K. S. Chem. Rev. 2014, 114, 10575.
[76] Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
[77] Ding, M.; Cai, X.; Jiang, H.-L. Chem. Sci. 2019, 10, 10209.
[78] Colombo, V.; Galli, S.; Choi, H. J.; Han, G. D.; Maspero, A.; Palmisano, G.; Masciocchi, N.; Long, J. R. Chem. Sci. 2011, 2, 1311.
[79] Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, U.S., 2007.
[80] Yu, X. J.; Xian, Y. M.; Wang, C.; Mao, H. L.; Kind, M.; Abu-Husein, T.; Chen, Z.; Zhu, S. B.; Ren, B.; Terfort, A.; Zhuang, J. L. J. Am. Chem. Soc. 2019, 141, 18984.
[81] Lu, P.; Wu, Y.; Kang, H.; Wei, H.; Liu, H.; Fang, M. J. Mater. Chem. A 2014, 2, 16250.
[82] Khutia, A.; Rammelberg, H. U.; Schmidt, T.; Henninger, S.; Janiak, C. Chem. Mater. 2013, 25, 790.
[83] Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857.
[84] Yuan, S.; Liu, T. F.; Feng, D.; Tian, J.; Wang, K.; Qin, J.; Zhang, Q.; Chen, Y. P.; Bosch, M.; Zou, L.; Teat, S. J.; Dalgarno, S. J.; Zhou, H. C. Chem. Sci. 2015, 6, 3926.
[85] Bueken, B.; Vermoortele, F.; Vanpoucke, D. E. P.; Reinsch, H.; Tsou, C.-C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E. A.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. Angew. Chem., Int. Ed. 2015, 54, 13912.
[86] Nguyen, H. L.; Gandara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 4330.
[87] Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. ACS Catal. 2017, 7, 338.
[88] Gao, J.; Miao, J.; Li, P. Z.; Teng, W. Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. Chem. Commun. 2014, 50, 3786.
[89] Keum, Y.; Park, S.; Chen, Y. P.; Park, J. Angew. Chem., Int. Ed. 2018, 57, 14852.
[90] Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
[91] Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643.
[92] Cao, J.; Yang, Z.-h.; Xiong, W.-p.; Zhou, Y.-y.; Peng, Y.-r.; Li, X.; Zhou, C.-y.; Xu, R.; Zhang, Y.-r. Chem. Eng. J. 2018, 353, 126.
[93] Du, X.-D.; Yi, X.-H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C.-C. Chem. Eng. J. 2019, 356, 393.
[94] Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S.-Y.; Hupp, J. T.; Farha, O. K. Coord. Chem. Rev. 2017, 346, 101.
[95] Tanabe, K. K.; Cohen, S. M. Chem. Soc. Rev. 2011, 40, 498.
[96] Jasuja, H.; Burtch, N. C.; Huang, Y. G.; Cai, Y.; Walton, K. S. Langmuir 2013, 29, 633.
[97] Lv, X. L.; Yuan, S.; Xie, L. H.; Darke, H. F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y. Z.; Li, J. R.; Zhou, H. C. J. Am. Chem. Soc. 2019, 141, 10283.
[98] Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. J. Am. Chem. Soc. 2012, 134, 18082.
[99] Lian, X.; Feng, D.; Chen, Y. P.; Liu, T. F.; Wang, X.; Zhou, H. C. Chem. Sci. 2015, 6, 7044.
[100] Towsif Abtab, S. M.; Alezi, D.; Bhatt, P. M.; Shkurenko, A.; Belmabkhout, Y.; Aggarwal, H.; Weseliński, Ł. J.; Alsadun, N.; Samin, U.; Hedhili, M. N.; Eddaoudi, M. Chem 2018, 4, 94.
[101] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051.
[102] Ng, E.-P.; Mintova, S. Microporous Mesoporous Mater. 2008, 114, 1.
[103] Canivet, J.; Bonnefoy, J.; Daniel, C.; Legrand, A.; Coasne, B.; Farrusseng, D. New J. Chem. 2014, 38, 3102.
[104] Hatch, C. D.; Wiese, J. S.; Crane, C. C.; Harris, K. J.; Kloss, H. G.; Baltrusaitis, J. Langmuir 2012, 28, 1790.
[105] Cadiau, A.; Lee, J. S.; Damasceno Borges, D.; Fabry, P.; Devic, T.; Wharmby, M. T.; Martineau, C.; Foucher, D.; Taulelle, F.; Jun, C. H.; Hwang, Y. K.; Stock, N.; De Lange, M. F.; Kapteijn, F.; Gascon, J.; Maurin, G.; Chang, J. S.; Serre, C. Adv. Mater. 2015, 27, 4775.
[106] Kummer, H.; Jeremias, F.; Warlo, A.; Füldner, G.; Fröhlich, D.; Janiak, C.; Gläser, R.; Henninger, S. K. Ind. Eng. Chem. Res. 2017, 56, 8393.
[107] Lenzen, D.; Zhao, J.; Ernst, S. J.; Wahiduzzaman, M.; Ken Inge, A.; Frohlich, D.; Xu, H.; Bart, H. J.; Janiak, C.; Henninger, S.; Maurin, G.; Zou, X.; Stock, N. Nat. Commun. 2019, 10, 3025.
[108] Li, H.; Feng, X.; Ma, D.; Zhang, M.; Zhang, Y.; Liu, Y.; Zhang, J.; Wang, B. ACS Appl. Mater. Interfaces 2018, 10, 3160.
[109] Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. ACS Cent. Sci. 2017, 3, 668.
[110] Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K. J. Am. Chem. Soc. 2019, 141, 2900.
[111] Leubner, S.; Zhao, H.; Van Velthoven, N.; Henrion, M.; Reinsch, H.; De Vos, D. E.; Kolb, U.; Stock, N. Angew. Chem., Int. Ed. 2019, 58, 10995.
[112] Zhang, J. P.; Zhu, A. X.; Lin, R. B.; Qi, X. L.; Chen, X. M. Adv. Mater. 2011, 23, 1268.
[113] Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Microporous Mesoporous Mater. 2009, 120, 325.
[114] Reinsch, H.; Pillai, R. S.; Siegel, R.; Senker, J.; Lieb, A.; Maurin, G.; Stock, N. Dalton Trans. 2016, 45, 4179.
[115] Ma, D.; Li, P.; Duan, X.; Li, J.; Shao, P.; Lang, Z.; Bao, L.; Zhang, Y.; Lin, Z.; Wang, B. Angew. Chem., Int. Ed. 2019, 59, 1.
[116] Padial, N. M.; Quartapelle Procopio, E.; Montoro, C.; Lopez, E.; Enrique Oltra, J.; Colombo, V.; Maspero, A.; Masciocchi, N.; Galli, S.; Senkovska, I.; Kaskel, S.; Barea, E.; Navarro, J. A. R. Angew. Chem., Int. Ed. 2013, 52, 8290.
[117] Karimi, A.; Abdi, M. A. Chem. Eng. Process.-Process Intensification 2009, 48, 560.
[118] Elimelech, M.; Phillip, W. A. Science 2011, 333, 712.
[119] Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Science 2017, 356, 430.
[120] Sha, H.; Xu, P.; Yang, Z.; Chen, Y.; Tang, J. Renew. Sustain. Energy Rev. 2019, 108, 76.
[121] Wade, C. R.; Corrales-Sanchez, T.; Narayan, T. C.; Dincă, M. Energy Environ. Sci. 2013, 6, 2172.
[122] Shi, C.; Zhang, H.; Xuan, Y. Build. Environ. 2019, 160, 106175.
[123] De Rossi, A.; Carvalheiras, J.; Novais, R. M.; Ribeiro, M. J.; Labrincha, J. A.; Hotza, D.; Moreira, R. F. P. M. Constr. Build. Mater. 2018, 191, 39.
[124] Hall, M. R.; Tsang, S. C. E.; Casey, S. P.; Khan, M. A.; Yang, H. Acta Mater. 2012, 60, 89.
[125] Watson, T. Nature 2014, 513, S14.
[126] Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D. Environ. Health 2013, 12.
[127] Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Build. Environ. 2018, 146, 98.
[128] Arundel, A. V.; Sterling, E. M.; Biggin, J. H.; Sterling, T. D. Environ. Health Perspect. 1986, 65, 351.
[129] Shehadi, M. J. Build. Eng. 2018, 19, 539.
[130] Wright, A. M.; Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. Chem. Sci. 2018, 9, 3856.
[131] Zheng, J.; Vemuri, R. S.; Estevez, L.; Koech, P. K.; Varga, T.; Camaioni, D. M.; Blake, T. A.; McGrail, B. P.; Motkuri, R. K. J. Am. Chem. Soc. 2017, 139, 10601.
[132] Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Chem. Mater. 2012, 24, 3153.
[133] Liu, Z.; Li, W.; Liu, H.; Zhuang, X.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese). (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
文章导航

/