研究评论

碳基介熵材料:理论与实验

  • 封博谞 ,
  • 庄小东
展开
  • 上海交通大学化学化工学院 变革性分子前沿科学中心 介熵物质研究室 上海 200240
封博谞,硕士毕业于南开大学化学学院,现为上海交通大学化学化工学院在读博士研究生,目前的研究方向为二维软物质与介熵材料的合成方法学开发;庄小东,毕业于华东理工大学(学士2006/博士2011),现为上海交通大学高分子系教授.长期致力于二维软物质及其介熵材料的可控制备,并基于第一性原理计算研究结构与性能之间的关系.曾获国家自然科学基金优秀青年基金资助(2017)、国际先进材料学会年度金奖(2019)、中国化学会元素周期表年中国青年化学家称号(2019)、英国皇家化学会新兴科学家称号(2019)、教育部自然科学奖(2019)、上海市自然科学奖(2010)、全国百篇优秀博士论文提名(2014).

收稿日期: 2020-05-15

  网络出版日期: 2020-06-29

基金资助

项目受国家自然科学基金优秀青年基金(No.51722304)、科技部国家重点研发计划(No.2017YFE9134000)、国家自然科学基金(Nos.51973114,21720102002,51811530013)、上海市浦江人才计划(No.18PJ1406100)和上海市科委(No.19JC412600)资助.

Carbon-Enriched meso-Entropy Materials: from Theory to Cases

  • Feng Boxu ,
  • Zhuang Xiaodong
Expand
  • The meso-Entropy Matter Lab, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-05-15

  Online published: 2020-06-29

Supported by

Project supported by the National Natural Science Foundation of China Excellent Young Scientists Fund (No. 51722304), National Key Research and Development Program of China (No. 2017YFE9134000), the National Natural Science Foundation of China (Nos. 51973114, 21720102002, 51811530013), Shanghai Pujiang Talent Program (No. 18PJ1406100), Science and Technology Commission of Shanghai Municipality (No. 19JC412600).

摘要

富碳型材料,包括纯碳材料的各种同素异形体、碳基骨架的稠环芳香分子、聚合物、框架材料等,已成为当今材料领域最重要的研究领域之一.在这些研究当中,很大一部分工作都是研究材料本身的结构与性质,而忽略了这些材料之间的内在联系.课本中的很多概念,如同分异构体、同素异形体和拓扑缺陷,已经无法用于深入理解种类和数量繁多的富碳型材料之间的构效关系.这就使得通过改变已知材料的有限结构来调控材料的性质变得工作重复而繁重,且基础理解受限于研究个体上.作者将从材料"熵"的概念入手,尝试理解富碳型材料之间熵的相对高低,并建议基于"介熵"的认识开发新型富碳型材料、开发新型介熵富碳型材料的全新性质.基于对具体的不同的新型富碳型材料的讨论,将"介熵"这一概念引入到同素异形体、同分异构体以及广泛存在于碳材料中的拓扑缺陷的理解上.类似富碳型材料的关系不再模糊地停留在几何结构层面上,为今后介熵富碳型材料及其他介熵材料的开发提供参考.

本文引用格式

封博谞 , 庄小东 . 碳基介熵材料:理论与实验[J]. 化学学报, 2020 , 78(9) : 833 -847 . DOI: 10.6023/A20050167

Abstract

Carbon-enriched materials, including carbon allotropes, polycyclic aromatic hydrocarbons, polymers, frameworks, etc., are rising as stars in functional materials field. Large amount of reported work focused on development of new structures with typical features for novel applications, and has long ignored the intrinsic relationship between similar structures. The superficial relationships of those carbon-enriched materials in textbook, e.g., isomers, allotropes and topological defects, are no longer enough for fundamental understanding the structure-property relationship study due to more and more carbon-enriched materials have been developed. Such disadvantage has long hindered development of new materials based on well-established material systems. In this work, meso-entropy concept is proposed for understanding and development of different kinds of carbon-enriched materials by comparing their relative entropy values. Based on theoretical models and case-to-case discussion, meso-entropy concept has been found compatible with the concept of isomers, allotropes and topological defects in carbon-enriched materials. From now on, hopefully, the meso-entropy defined relationship for carbon-enriched materials will be no longer staying at the geometric level, and provide new thinking development of new carbon-enriched materials and other meso-entropy materials.

参考文献

[1] de Gennes, P. G. Angew. Chem., Int. Ed. 1992, 31, 842.
[2] Cowie, J. M. G.; Arrighi, V. Polymers:Chemistry and Physics of Modern Materials, CRC press, New York, 2007.
[3] Smalley, R. E. Angew. Chem., Int. Ed. 1997, 36, 1594.
[4] Heeger, A. Chem. Soc. Rev. 2010, 39, 2352.
[5] Geim, A.; Novoselov, K. Nat. Phys. 2010, 6, 836.
[6] Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science 2002, 297, 787.
[7] Yang, N.; Yu, S.; Macpherson, J. V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G. M.; Jiang, X. Chem. Soc. Rev. 2019, 48, 157.
[8] Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Adv. Mater 2019, 31, 1802922.
[9] Scott, L. T. Chem. Soc. Rev. 2015, 44, 6464.
[10] Dodiuk, H.; Goodman, S. H. Handbook of Thermoset Plastics:1. Introduction, William Andrew, Boston, 2013.
[11] Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Angew. Chem., Int. Ed. 2009, 48, 1030.
[12] Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, C.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese). (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
[13] Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Adv. Mater 2018, 30, 1704303.
[14] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
[15] James, S. L. Chem. Soc. Rev. 2003, 32, 276.
[16] Zhang, X.-R.; Wang, X.; Fan, W.-D.; Sun, D.-F. Chin. J. Chem. 2020, 38, 509.
[17] Zeng, J.-Y.; Wang, X.-S.; Zhang, X.-Z.; Zhuo, R.-X. Acta Chim. Sinica 2019, 77, 1156(in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[18] Chen, Z.-Y.; Liu, J.-W.; Cui, H.; Zhang, L.; Su, C.-Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
[19] Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.
[20] Liu, Z.-L.; Li, W.; Liu, H.; Zhuang, X.-D.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese). (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
[21] Inagaki, M.; Radovic, L. R. Carbon 2002, 40, 2279.
[22] Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.
[23] James, D. K.; Tour, J. M. Acc. Chem. Res. 2013, 46, 2307.
[24] Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
[25] Bethune, D.; Kiang, C. H.; De Vries, M.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.
[26] Zhu, S.; Xu, G. Nanoscale 2010, 2, 2538.
[27] Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M. E. Inorg. Chim. Acta 2017, 468, 49.
[28] Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744.
[29] Jensen, W. B. J. Chem. Edu. 2006, 83, 838.
[30] Petrucci, R. H.; Harwood, W. S.; Herring, F. G. General Chemistry:Principles and Modern Applications, Vol. 1, Prentice Hall, New York, 2002.
[31] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[32] Yazyev, O. V.; Louie, S. G. Phys. Rev. B 2010, 81, 195420.
[33] Liu, Y.; Yakobson, B. I. Nano Lett. 2010, 10, 2178.
[34] Huang, P. Y.; Ruiz-Vargas, C. S.; Van Der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. Nature 2011, 469, 389.
[35] Lu, J.; Bao, Y.; Su, C. L.; Loh, K. P. ACS Nano 2013, 7, 8350.
[36] Fultz, B. Prog. Mater. Sci. 2010, 55, 247.
[37] Butler, K. T.; Walsh, A.; Cheetham, A. K.; Kieslich, G. Chem. Sci. 2016, 7, 6316.
[38] Wei, J. Ind. Eng. Chem. Res. 1999, 38, 5019.
[39] Karplus, M.; Kushick, J. N. Macromolecules 1981, 14, 325.
[40] Levy, R. M.; Karplus, M.; Kushick, J.; Perahia, D. Macromolecules 1984, 17, 1370.
[41] Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.
[42] Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walsh, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538.
[43] Nyman, J.; Day, G. M. CrystEngComm 2015, 17, 5154.
[44] Doak, J. W.; Wolverton, C.; Ozoliņš, V. Phys. Rev. B 2015, 92, 174306.
[45] Rhein, R. K.; Dodge, P. C.; Chen, M.-H.; Titus, M. S.; Pollock, T. M.; Van der Ven, A. Phys. Rev. B 2015, 92, 174117.
[46] Vela, S.; Mota, F.; Deumal, M.; Suizu, R.; Shuku, Y.; Mizuno, A.; Awaga, K.; Shiga, M.; Novoa, J. J.; Ribas-Arino, J. Nat. Commun. 2014, 5, 1.
[47] Ma, F.; Zheng, H.; Sun, Y.; Yang, D.; Xu, K.; Chu, P. K. Appl. Phys. Lett. 2012, 101, 111904.
[48] Pascal, T. A.; Goddard, W. A.; Jung, Y. Proc. Natl. Acad. Sci. 2011, 108, 11794.
[49] Chia-en, A. C.; Chen, W.; Gilson, M. K. Proc. Natl. Acad. Sci. 2007, 104, 1534.
[50] Besara, T.; Jain, P.; Dalal, N. S.; Kuhns, P. L.; Reyes, A. P.; Kroto, H. W.; Cheetham, A. K. Proc. Natl. Acad. Sci. 2011, 108, 6828.
[51] Laio, A.; Gervasio, F. L. Rep. Prog. Phys. 2008, 71, 126601.
[52] Silberberg, M. Principles of General Chemistry, McGraw-Hill Education, New York, 2012.
[53] Navrotsky, A.; Kleppa, O. J. Inorg. Nucl. Chem. 1968, 30, 479.
[54] Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90.
[55] Gyorffy, B. Phys. Rev. B 1972, 5, 2382.
[56] Zunger, A.; Wei, S.-H.; Ferreira, L.; Bernard, J. E. Phys. Rev. Lett. 1990, 65, 353.
[57] Sanchez, J. M.; Ducastelle, F.; Gratias, D. Phys. A 1984, 128, 334.
[58] Nielsen, M. A.; Chuang, I. L. Phys. Today 2001, 54, 60.
[59] Trucco, E. Bull. Math. Biophys. 1956, 18, 129.
[60] Lin, S.-K. Mol. Online 1996, 1, 57.
[61] Agrafiotis, D. K. J. Chem. Inf. Comput. Sci. 1997, 37, 576.
[62] Godden, J. W.; Stahura, F. L.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2000, 40, 796.
[63] Godden, J. W.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2001, 41, 1060.
[64] Graham, D. J. J. Chem. Inf. Comput. Sci. 2002, 42, 215.
[65] Dehmer, M.; Varmuza, K.; Borgert, S.; Emmert-Streib, F. J. Chem. Inf. Model. 2009, 49, 1655.
[66] Graham, D. J.; Malarkey, C.; Schulmerich, M. V. J. Chem. Inf. Comput. Sci. 2004, 44, 1601.
[67] Tarko, L. J. Math. Chem. 2011, 49, 2330.
[68] Zhdanov, Y. A. Information Entropy in Organic Chemistry, Rostov University, Rostov, Russia, 1979, p. 56.
[69] Karreman, G. Bull. Math. Biophys. 1955, 17, 279.
[70] Levine, R. Annu. Rev. Phys. Chem. 1978, 29, 59.
[71] Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90.
[72] Hô, M.; Schmider, H. L.; Weaver, D. F.; Smith Jr., V. H.; Sagar, R. P.; Esquivel, R. O. Int. J. Quantum Chem. 2000, 77, 376.
[73] Kobozev, N. Russ. J. Phys. Chem. A 1966, 40, 281.
[74] Haken, H. Information and Self-Organization. A Macroscopic Approach to Complex Systems, Springer-Verlag, Berlin, 1988, p. 240.
[75] García-Garibay, M. A. Photochem. Photobiol. Sci. 2010, 9, 1574.
[76] Nosonovsky, M. Philos. Trans. R. Soc., A 2010, 368, 4755.
[77] Li, H.-L. College Physics 2004, 12, 37(in Chinese). (李鹤龄, 大学物理, 2004, 12, 37.)
[78] Hartley, R. V. L. Bell Syst. Tech. J. 1928, 7, 535.
[79] Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.
[80] Nemcsics, A.; Nagy, S.; Mojzes, I.; Schwedhelm, R.; Woedtke, S.; Adelung, R.; Kipp, L. Vacuum 2009, 84, 152.
[81] Torrens, F.; Castellano, G. Microelectron. J. 2007, 38, 1109.
[82] Sabirov, D. S.; Ōsawa, E. J. Chem. Inf. Model. 2015, 55, 1576.
[83] Kohn, W. Rev. Mod. Phys. 1999, 71, S59.
[84] Goldstein, J. Emergence 1999, 1, 49.
[85] Chen, X.; Gu, Z.-C.; Wen, X.-G. Phys. Rev. B 2010, 82, 155138.
[86] Holzhey, C.; Larsen, F.; Wilczek, F. Nucl. Phys. B 1994, 424, 443.
[87] Calabrese, P.; Cardy, J. J. Stat. Mech.:Theory Exp. 2004, 2004, P06002.
[88] Kitaev, A.; Preskill, J. Phys. Rev. Lett. 2006, 96, 110404.
[89] Levin, M.; Wen, X.-G. Phys. Rev. Lett. 2006, 96, 110405.
[90] Brehm, E.; Brunner, I.; Jaud, D.; Schmidt-Colinet, C. Fortschr. Phys. 2016, 64, 516.
[91] Moore, G.; Seiberg, N. Nucl. Phys. B 1989, 313, 16.
[92] Verlinde, E. Nucl. Phys. B 1988, 300, 360.
[93] Fendley, P.; Fisher, M. P. A.; Nayak, C. J. Stat. Phys. 2007, 126, 1111.
[94] Jaud, D. Ph.D. Dissertation, Ludwig-Maximilians-Universität München, München, 2002.
[95] Jeong, B. W.; Ihm, J.; Lee, G.-D. Phys. Rev. B 2008, 78, 165403.
[96] Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Science 2012, 337, 209.
[97] Jin, Y.; Cheng, J.; Varma-Nair, M.; Liang, G.; Fu, Y.; Wunderlich, B.; Xiang, X. D.; Mostovoy, R.; Zettl, A. K. J. Phys. Chem. 1992, 96, 5151.
[98] Atkins, P.; De Paula, J.; Friedman, R. Quanta, matter, and change:a molecular approach to physical chemistry, Oxford University Press, Oxford, 2009.
[99] Grochala, W. Angew. Chem., Int. Ed. 2014, 53, 3680.
[100] Vasiliev, O. O.; Muratov, V. B.; Kulikov, L. M.; Garbuz, V. V.; Duda, T. I. J. Superhard Mater. 2015, 37, 388.
[101] Muratov, V. B.; Vasil'ev, O. O.; Kulikov, L. M.; Garbuz, V. V.; Nesterenko, Y. V.; Duda, T. I. J. Superhard Mater. 2012, 34, 173.
[102] Lebedev, B. V.; Bykova, T. A.; Lobach, A. S. J. Therm. Anal. Calorim. 2000, 62, 257.
[103] Zhang, Y.; Zhao, J.; Fang, Y.; Liu, Y.; Zhao, X. Nanoscale 2018, 10, 17824.
[104] Mermin, N. D. Phys. Rev. 1968, 176, 250.
[105] Mermin, N. D.; Wagner, H. Phys. Rev. Lett. 1966, 17, 1307.
[106] Le Doussal, P.; Radzihovsky, L. Phys. Rev. Lett. 1992, 69, 1209.
[107] Iijima, S. Nature 1991, 354, 56.
[108] Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
[109] Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Nat. Commun. 2014, 5, 3186.
[110] Tian, W.-C.; Zhang, X.-Y.; Chen, Z.-Q.; Ji, H.-Y. Recent Pat. Nanotechnol. 2016, 10, 3.
[111] Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379.
[112] Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C.; Terrones, H. Nano Today 2010, 5, 351.
[113] Berman, D.; Erdemir, A.; Sumant, A. V. Mater. Today 2014, 17, 31.
[114] Araujo, P. T.; Terrones, M.; Dresselhaus, M. S. Mater. Today 2012, 15, 98.
[115] Botello-Méndez, A. R.; Declerck, X.; Terrones, M.; Terrones, H.; Charlier, J. C. Nanoscale 2011, 3, 2868.
[116] Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. J. Am. Chem. Soc. 2019, 141, 17713.
[117] Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Acc. Chem. Res. 2002, 35, 1096.
[118] Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
[119] Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes:Their Properties and Applications, Acedemic Press, San Diego, 1996.
[120] Sun, X.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y.; Li, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 6551.
[121] Zandonella, C. Nature 2001, 410, 734.
[122] Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Nano Lett. 2006, 6, 1880.
[123] Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Proc. Natl. Acad. Sci. 2007, 104, 13574.
[124] Odom, T. W.; Huang, J.-L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62.
[125] Ebbesen, T.; Takada, T. Carbon 1995, 33, 973.
[126] Kosaka, M.; Ebbesen, T. W.; Hiura, H.; Tanigaki, K. Chem. Phys. Lett. 1995, 233, 47.
[127] Dunlap, B. I. Phys. Rev. B 1992, 46, 1933.
[128] Dunlap, B. I. Phys. Rev. B 1994, 49, 5643.
[129] Wei, D.; Liu, Y. Adv. Mater 2008, 20, 2815.
[130] Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Nat. Mater. 2005, 4, 663.
[131] Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Nature 1999, 402, 273.
[132] Pan, B. C.; Yang, W. S.; Yang, J. Phys. Rev. B 2000, 62, 12652.
[133] Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063.
[134] Feng, B.; Zhuang, X. Faraday Discuss. 2019, DOI:10.1039/C9FD00115H.
[135] Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.
[136] Sidman, J. W.; McClure, D. S. J. Chem. Phys. 1956, 24, 757.
[137] Tétreault, N.; Muthyala, R. S.; Liu, R. S.; Steer, R. P. J. Phys. Chem. A 1999, 103, 2524.
[138] Mitchell, D. R.; Gillispie, G. D. J. Phys. Chem. 1989, 93, 4390.
[139] Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3, 2721.
[140] Yamaguchi, Y.; Ogawa, K.; Nakayama, K.-i.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095.
[141] Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem., Int. Ed. 2018, 57, 1322.
[142] Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656.
[143] Amir, E.; Murai, M.; Amir, R. J.; Cowart, J. S.; Chabinyc, M. L.; Hawker, C. J. Chem. Sci. 2014, 5, 4483.
[144] Dias, J. R. J. Phys. Org. Chem.2007, 20, 395.
[145] Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.-i.; Koganezawa, T.; Katagiri, H. J. Am. Chem. Soc. 2016, 138, 11335.
[146] Hou, I. C.-Y.; Shetti, V.; Huang, S.-L.; Liu, K.-L.; Chao, C.-Y.; Lin, S.-C.; Lin, Y.-J.; Chen, L.-Y.; Luh, T.-Y. Org. Chem. Front. 2017, 4, 773.
[147] Sun, Q.; Hou, I. C.-Y.; Eimre, K.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Fasel, R. Chem. Commun. 2019, 55, 13466.
[148] Jessop, P. G. Green Chem. 2011, 13, 1391.
[149] Ghasimi, S.; Landfester, K.; Zhang, K. A. ChemCatChem 2016, 8, 694.
[150] Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.
[151] Ghasimi, S.; Bretschneider, S. A.; Huang, W.; Landfester, K.; Zhang, K. A. Adv. Sci. 2017, 4, 1700101.
[152] Kishida, K.; Horike, S.; Nakagawa, K.; Kitagawa, S. Chem. Lett. 2012, 41, 425.
[153] Anderson Jr., A. G.; Steckler, B. M. J. Am. Chem. Soc. 1959, 81, 4941.
[154] Barman, S.; Khutia, A.; Koitz, R.; Blacque, O.; Furukawa, H.; Iannuzzi, M.; Yaghi, O. M.; Janiak, C.; Hutter, J.; Berke, H. J. Mater. Chem. A 2014, 2, 18823.
[155] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
[156] Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309, 1350.
[157] Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 14904.
[158] Nakagawa, K.; Tanaka, D.; Horike, S.; Shimomura, S.; Higuchi, M.; Kitagawa, S. Chem. Commun. 2010, 46, 4258.
[159] Holovics, T. C.; Robinson, R. E.; Weintrob, E. C.; Toriyama, M.; Lushington, G. H.; Barybin, M. V. J. Am. Chem. Soc. 2006, 128, 2300.
[160] Sun, S.; Zhuang, X.; Wang, L.; Zhang, B.; Ding, J.; Zhang, F.; Chen, Y. J. Mater. Chem. C 2017, 5, 2223.
[161] Yang, C.; Schellhammer, K. S.; Ortmann, F.; Sun, S.; Dong, R.; Karakus, M.; Mics, Z.; Löffler, M.; Zhang, F.; Zhuang, X.; Cánovas, E.; Cuniberti, G.; Bonn, M.; Feng, X. Angew. Chem., Int. Ed. 2017, 56, 3920.
文章导航

/