综述

Anderson型杂多酸作为催化剂在有机合成中的应用

  • 魏哲宇 ,
  • 常亚林 ,
  • 余焓 ,
  • 韩生 ,
  • 魏永革
展开
  • a 上海应用技术大学化学与环境工程学院 上海 201418;
    b 清华大学化学系 北京 100084
魏哲宇,上海应用技术大学化学与环境工程学院应用化学专业2018级硕士研究生,目前致力于多酸化学领域的研究,探索多酸的合成、结构、修饰及其催化应用.
常亚林,1997年生于河南省濮阳市,2019年本科毕业于上海应用技术大学化学与环境工程学院,现为上海应用技术大学化学与环境工程学院应用化学专业硕士研究生,主要研究方向为杂多酸的选择性催化氧化.
余焓博士,清华大学博士后,上海应用技术大学副教授.先后承担国家自然科学基金、国家博士后基金、上海市联盟计划企业委托开发等多个研究项目.长期致力于有机合成及不对称催化,药物及其关键中间体的高效合成方法,手性有机无机杂化材料催化剂设计与合成及其应用等研究.
韩生博士,上海应用技术大学教授,博士生导师.长期从事石油化工、精细化工等方面的研发工作.负责主持国家自然基金面上项目、曙光计划、上海市人才发展基金、上海市科委等各类课题四十余项.《精细石油化工》特约编委,废旧高分子材料回收专家委员会委员、中国科学院青岛生物能源过程工程所客座研究员等.
魏永革博士,清华大学教授、博士生导师,国家杰出青年基金获得者.当前的研究主要致力于多酸的合成、化学修饰和多酸衍生物的反应化学与可控组装及其在有机合成、材料、能源、环境和生物领域中的催化应用研究.

收稿日期: 2020-05-26

  网络出版日期: 2020-06-30

基金资助

项目受国家自然科学基金(Nos.21971134,21631007,21225103)资助.

Application of Anderson Type Heteropoly Acids as Catalysts in Organic Synthesis

  • Wei Zheyu ,
  • Chang Yalin ,
  • Yu Han ,
  • Han Sheng ,
  • Wei Yongge
Expand
  • a College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418;
    b Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2020-05-26

  Online published: 2020-06-30

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21971134, 21631007, 21225103).

摘要

Anderson型杂多酸(通式为[XM6O24]n)是一类具有特殊结构和性质的多金属-氧簇无机化合物,由于其分子结构易于化学修饰和可设计性以及其在材料、催化和医药等领域具有很高的应用价值,因此一直受到研究者们的广泛关注.近几年来,Anderson型杂多酸在催化有机氧化反应中的应用对于绿色催化过程的研究逐渐显露出非常重要的意义.本综述对Anderson型杂多酸在有机合成反应中的催化应用进行了相关的调研,根据Anderson型多金属氧酸盐的结构分类对这些工作进行了归纳概述与总结.这将为Anderson型杂多酸的催化应用以及为绿色催化的研究提供新的思路.

本文引用格式

魏哲宇 , 常亚林 , 余焓 , 韩生 , 魏永革 . Anderson型杂多酸作为催化剂在有机合成中的应用[J]. 化学学报, 2020 , 78(8) : 725 -732 . DOI: 10.6023/A20050187

Abstract

Anderson type heteropoly acids, also known as Anderson type polyoxometalates, are a kind of important structures in polyoxometalates. Their general structural formula can be expressed as [XM6O24]n, in which the core heteroatom X can almost be replaced by almost any metal or nonmetal element in the periodic table. Due to unique structure easy to be modified with organic ligands and designability, as well as their potential applications in materials, catalysis and medicines, Anderson type heteropoly acids have been widely concerned by researchers. In recent years, the application of Anderson type heteropoly acids in organic synthesis has gradually shown great significance for the study of green catalytic process. In this paper, the catalytic application of Anderson type heteropoly acids in organic synthesis has been reviewed and summarized according to the structure classification of Anderson type polyoxometalates. This will be helpful for the researchers to further study the catalytic application of Anderson heteropoly acids and provides new ideas for the research of green catalysis.

参考文献

[1] Chen, W. L.; Wang, E. B. Polyoxometalate Chemistry, Science Press, Beijing, 2013, p. 38.
[2] Wang, N. J. Changchun Normal Univ. 2015, 34, 58.
[3] Wang, F. Ph.D. Dissertation, Northeast Normal University, Shenyang, 2007 (in Chinese). (王丰, 博士论文, 东北师范大学, 沈阳, 2007.)
[4] Qin, Z. X.; Li, Q.; Huang, Y. C.; Zhang, J. W.; Li, G.; Wei, Y. G. Chin. Sci. Bull. 2018, 63, 3263.
[5] Zhang, J. W.; Huang, Y. C.; Hao, J.; Wei, Y. G. Inorg. Chem. Front. 2017, 4, 1215.
[6] Wei, Z. Y.; Wei, Y. G. CN 104152980A, 2014 [Chem. Abstr. 2014, 9, 60].
[7] Hu, C. W.; Zhen, H.; Xu, L.; Wang, E. B. J. Mol. Sci. 1997, (1), 45 (in Chinese). (胡长文, 甄慧, 许林, 王恩波, 分子科学学报, 1997, (1), 45.)
[8] Wu, P. S.; Zhang, H. Y.; Xu, L; De, G. J. R. H.; Hu, C. W.; Wang, E. B. J. Northeast Normal Univ. (Nat. Sci.) 2001, 4, 51 (in Chinese). (巫平松, 张宏宇, 许林, 德格吉日呼, 胡长文, 王恩波, 东北师大学报(自然科学版), 2001, 4, 51.)
[9] Guo, S. R.; Kong, Y. M.; Peng, J.; Wang, E. B. Chem. Bull. 2007, 10, 748 (in Chinese). (郭树荣, 孔育梅, 彭军, 王恩波, 化学通报, 2007, 10, 748.)
[10] Wei, Y. G. New progress of Polyacid Imine Derivatives, Abstracts of the 6th annual academic meeting and member congress of China Crystal Society (functional molecular crystal branch), China Crystal Society, 2016, p. 28.
[11] Wei, Z. Y.; Li, Q.; Wei, Y. G. J. Mol. Sci. 2017, 33, 391 (in Chinese). (魏哲宇, 李琦, 魏永革, 分子科学学报, 2017, 33, 391.)
[12] Song, Y. F.;Wei, Y. G. Chin. Sci. Bull. 2018, 63, 3261 (in Chinese). (宋宇飞, 魏永革, 科学通报, 2018, 63, 3261.)
[13] Yu, F. L.; Liu, C. Y.; Xie, P. H.; Yuan, B.; Xie, C. X.; Yu, S. T. RSC Adv. 2015, 5, 85540.
[14] Lei, Y.; Li, Z.; Yuan, Z.; Wang, R.; Sunee, W.; Dong, Z. L. Sep. Purif. Technol. 2015, 151, 155.
[15] Li, P. C. M.S. Dissertation, Yantai University, Yantai, 2017 (in Chinese). (李鹏程, 硕士论文, 烟台大学, 烟台, 2017.)
[16] Yang, W.; Hou, Y. J.; An, H. Y. J. Mol. Sci. 2017, 33, 385 (in Chinese). (杨微, 侯玉姣, 安海艳, 分子科学学报, 2017, 33, 385.)
[17] Sun, L.; Su, T.; Li, P. Catal. Lett. 2019, 149, 7.
[18] Ji, H. B.; She, Y. B. Prog. Chem. Eng. 2007, 26, 605 (in Chinese). (纪红兵, 佘远斌, 化工进展, 2007, 26, 605.)
[19] Li, J. J.; Wu, F. Textbook of introduction to green chemistry, Wuhan University Press, WuHan, 2015, p. 8.
[20] He, Y. M.; Sun, Y. H.; Han, B. X. Chin. Sci. Bull. 2015, 16, 1421.
[21] Song, J. L.; Han, B. X. Natl. Sci. Rev. 2015, 3, 255.
[22] SD, K.; Gokavi, G. S. Res. J. Chem. 2016, 6, 17.
[23] Yu, H.; Zhai, Y. Y.; Dai, G. Y.; Ru, S.; Han, S.; Wei, Y. G. Chem.-Eur. J. 2017, 23, 13883.
[24] Yu, H.; Ru, S.; Zhai, Y. Y.; Dai, G. Y.; Han, S.; Wei, Y. G. ChemCatChem 2018, 10, 1253.
[25] Zhai, Y. Y.; Zhang, M. Q.; Fang, H. B.; Ru, S.; Yu, H.; Zhao, W. S.; Wei, Y. G. Org. Chem. Front. 2018, 5, 3454.
[26] Zhang, M. Q.; Zhai, Y. Y.; Ru, S.; Zang, D. J.; Han, S.; Yu, H.; Wei, Y. G. Chem. Commun. 2018, 54, 10164.
[27] Wang, J. J.; Zhai, Y. Y.; Wang, Y.; Yu, H.; Zhao, W. S.; Wei, Y. G. Dalton Trans. 2018, 47, 13323.
[28] Sawant, J. D.; Patil, K. K.; Gokavi, G. S. Transition Met. Chem. 2019, 44, 153.
[29] Wei, Z. Y.; Ru, S.; Zhao, Q. X.; Yu, H.; Zhang, G.; Wei, Y. G. Green Chem. 2019, 21, 4069.
[30] Zhou, Z. H.; Dai, G. Y.; Ru, S.; Yu, H.; Wei, Y. G. Dalton Trans. 2019, 48, 14201.
[31] Yu, H.; Wang, J. J.;Wu, Z. K.; Zhao, Q. X.; Dan, D. M.; Han, S.; Tang, J. J.; Wei, Y. G. Green Chem. 2019, 21, 4550.
[32] Yu, H.; Wu, Z. K.; Wei, Z. Y.; Zhai, Y. Y.; Ru, S.; Zhao, Q. X.; Wang, J. J.; Han, S.; Wei, Y. G. Commun. Chem. 2019, 2, 1.
[33] Wu, Z. K.; Zhai, Y. Y.; Zhao, W. S.; Wei, Z. Y.; Yu, H.; Han, S.; Wei, Y. G. Green Chem. 2020, 22, 737.
[34] Xu, J. J.; Zhu, Z. G.; Yuan, Z. L.; Su, T.; Zhao, Y. C.; Ren, W. Z.; Zhang, Z. H.; Lu, H. Y. J. Taiwan Inst. Chem. E. 2019, 104, 8.
[35] Wang, J. J.; Yu, H.; Wei, Z. Y.; Qi, L.; Xuan, W. M.; Wei, Y. G. Research, 2020, 1, 3875920.
[36] Luo, J. H.; Huang, Y. C.; Ding, B.; Wang, P. M.; Geng, X. F.; Zhang, J. W.; Wei, Y. G. Catalysts 2018, 8, 121.
[37] Yu, H.; Ru, S.; Dai, G. Y.; Zhai, Y. Y.; Lin, H. L.; Han, S.; Wei, Y. G. Angew. Chem. Int. Ed. 2017, 56, 3867.
[38] She, S.; Mu, L.; Li, Q.; Huang, Z. H.; Wei, Y. G.; Yin, P. C. ChemPlusChem 2019, 11, 84.
文章导航

/