研究论文

多功能Fe3O4@SiO2 Janus颗粒

  • 赵若彤 ,
  • 韩天昊 ,
  • 孙大吟 ,
  • 山丹 ,
  • 刘正平 ,
  • 梁福鑫
展开
  • a 北京师范大学 化学学院 北京 100875;
    b 清华大学 化学工程系 高分子科学与工程研究所 北京 100084;
    c 中国石油化工股份有限公司石油化工科学研究院 北京 100083;
    d 首都医科大学附属北京妇产医院 北京 100020

收稿日期: 2020-06-04

  网络出版日期: 2020-07-15

基金资助

项目受国家自然科学基金(Nos.51673119,51622308)资助.

Multifunctional Fe3O4@SiO2Janus Particles

  • Zhao Ruotong ,
  • Han Tianhao ,
  • Sun Dayin ,
  • Shan Dan ,
  • Liu Zhengping ,
  • Liang Fuxin
Expand
  • a College of Chemistry, Beijing Normal University, Beijing 100875;
    b Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084;
    c Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corporation, Beijing 100083;
    d Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100020

Received date: 2020-06-04

  Online published: 2020-07-15

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51673119, 51622308).

摘要

采用溶剂热法和溶胶-凝胶法制备了顺磁性Fe3O4@SiO2颗粒,以Pickering乳液界面保护法实现颗粒表面分区获得Fe3O4@SiO2 Janus颗粒,进一步选区复合生长Pt或Ag纳米颗粒制备Fe3O4@SiO2-Pt和Fe3O4@SiO2-Ag Janus颗粒.Fe3O4@SiO2-Pt Janus颗粒的Pt一侧进行催化过氧化氢的反应,具有自驱动功能.因其顺磁性和两亲性,Fe3O4@SiO2-Ag Janus颗粒能够作为磁响应颗粒乳化剂稳定油水乳液,并将Ag的催化功能引入界面.

本文引用格式

赵若彤 , 韩天昊 , 孙大吟 , 山丹 , 刘正平 , 梁福鑫 . 多功能Fe3O4@SiO2 Janus颗粒[J]. 化学学报, 2020 , 78(9) : 954 -960 . DOI: 10.6023/A20060208

Abstract

Fe3O4@SiO2 particles were synthesized by a solvothermal method and a classical stÖber method. Superparamagnetic Fe3O4 was the core, and a sol-gel coating of SiO2 was the shell. After the SiO2 surface was modified with amino groups, benzaldehyde was conjugated to the particles by a Schiff base reaction. The Fe3O4@SiO2 particles were emulsified in paraffin/water as a solid emulsifier to obtain an oil-in-water Pickering emulsion. After cooling the paraffin, the particles were fixed on the surface of the emulsion droplets. The particles were etched in ammonium fluoride aqueous solution, and Janus particles with different structures could be obtained by adjusting the etching time. Via the in situ growth of metal Pt or Ag nanoparticles, superparamagnetic Fe3O4@SiO2-Pt or Fe3O4@SiO2-Ag Janus particles were obtained. The movement of Fe3O4@SiO2-Pt Janus particles was observed due to the catalytic decomposition of hydrogen peroxide aqueous solution. It was found that in the short term, there was a linear motion, while in the long term, the motion direction and trajectory were random. Fe3O4@SiO2-Ag Janus particles were used as magnetic solid surfactants to stabilize the emulsions and catalyze the nitro reduction. About 60% of the surficial area of the Janus particles was modified by phenyl groups, while the remaining 40% was covered with Ag nanoparticles. Under the premise of maintaining the Janus balance, the whole particle became more hydrophobic, which was conducive to the formation of the water-in-oil emulsion. In addition, the Ag side of the Janus particles was towards the aqueous phase, and the opposite hydrophobic side was towards the oil phase. The Janus particles possessed a fixed orientation assembly at the oil-water interface. The assemble membrane possessed Janus characteristics, and it facilitated the stable dispersion of the emulsion and the catalysis. The method has the advantages of a simple principle, capability for mass production, universality and versatility. It is expected that Janus particles will be used to more precisely regulate the zoning with different functional substances.

参考文献

[1] De Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645.
[2] Jiang, S.; Granick, S. Janus Particles Synthesis, Self-assembly and Applications, RSC, London, England, 2012.
[3] Shi, S. Y.; Zhang, L. L.; Zhang, G. L.; Song, X. M.; Sun, D. Y.; Liang, F. X.; Yang, Z. Z. Macromolecules 2020, 53, 2228.
[4] Xiang, D.; Jiang, B. Y.; Liang, F. X.; Yan, L. T.; Yang, Z. Z. Macromolecules 2020, 53, 1063.
[5] Zhang, H.; Wang, Q.; Jiang, B. Y.; Liang, F. X.; Yang, Z. Z. ACS Appl. Mater. Interfaces 2016, 8, 33250.
[6] Zhao, R. T.; Yu, X. T.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. ACS Appl. Nano. Mater. 2019, 2, 2127.
[7] Zhao, R. T.; Han, T. H.; Sun, D. Y.; Huang, L. Y.; Liang, F. X.; Liu, Z. P. Langmuir 2019, 35, 11435.
[8] Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y. Adv. Mater. 2006, 18, 1152.
[9] Hays, D. A. J. Electrost. 2001, 51-52, 57.
[10] Wu, B.; Liu, Z. Q.; Liu, X. S.; Liu, G. Q.; Tang, P.; Yuan, W.; Fu, G. L. Nanotechnology 2020, 31, 225301.
[11] Dolbashian1, C.; Chavez1, B. L.; Bauer, M.; Budi, M.; Andrew, J. S.; Crawford, T. M. J. Phys. D:Appl. Phys. 2020, 53, 195002.
[12] Li, L. L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F. M.; Yagmurcukardes, M. Phys. Rev. B 2020, 101, 134102.
[13] Paulus, M.; Degen, P.; Brenner, T.; Tiemeyer, S.; Struth, B.; Tolan, M.; Rehage, H. Langmuir 2010, 26, 15945.
[14] Xu, Q. A.; Kang, X. W.; Bogomolni, R. A.; Chen, S. W. Langmuir 2010, 26, 14923.
[15] Ozin, G. A.; Manners, I.; Fournier-Bidoz, S.; Arsenault, A. Adv. Mater. 2005, 17, 3011.
[16] Wang, J. ACS Nano 2009, 3, 4.
[17] Cui, L. Y.; Fan, S. S.; Yu, C. L. Acta Chim. Sinica 2017, 75, 967(in Chinese). (崔丽影, 范莎莎, 于存龙, 化学学报, 2017, 75, 967.)
[18] Zhang, B. B.; Ma, C.; Wang, X. G. Acta Chim. Sinica 2015, 73, 441(in Chinese). (张贝贝, 马驰, 王小刚, 化学学报, 2015, 73, 441.)
[19] Chen, C. Y.; Yi, J. Q.; Dong, H. Y. Chin. J. Chem. 2015, 33, 527.
[20] Liang, F. X.; Yang, Z. Z. Acta Polym. Sin. 2017, (6), 883(in Chinese). (梁福鑫, 杨振忠, 高分子学报, 2017, (6), 883.)
[21] Tang, L.; Liang, F. X.; Wang, Q. Chin. J. Polym. Sci. 2017, 35, 799(in Chinese). (唐琳, 梁福鑫, 王倩, 高分子科学, 2017, 35, 799.)
[22] Meng, H. Y.; Wan, J. P.; Jing, J. Y. Chin. Chem. Lett. 2020, 31, 253(in Chinese). (孟宏宇, 万基平, 井静云, 中国化学快报, 2020, 31, 253.)
[23] Jing, J. Y.; Yao, X. H.; Yang, Z. Z. Acta Polym. Sin. 2018, 8, 1066(in Chinese). (井静云, 姚晓辉, 杨振忠, 高分子学报, 2018, 8, 1066.)
[24] Liang, F. X.; Liu, B.; Yang, Z. Z. Polym. Bull. 2016, (9), 45(in Chinese). (梁福鑫, 刘冰, 杨振忠, 高分子通报, 2016, (9), 45.)
[25] Pickering, S. U. J. Am. Chem. Soc. 1907, 91, 2001.
[26] Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7, 21.
[27] Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226.
[28] Melle, S.; Lask, M.; Fuller, G. G. Langmuir 2005, 21, 2158.
[29] Komazaki, Y.; Hirama, H.; Torii, T. J. Appl. Phys. 2015, 117, 154506.
[30] Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 2539.
[31] Liang, F. X.; Zhang, C. L.; Yang, Z. Z. Adv. Mater. 2014, 26, 6944.
[32] Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Angew. Chem., Int. Ed. 2005, 44, 744.
[33] Laocharoensuk, R.; Burdick, J.; Wang, J. ACS Nano 2008, 2, 1069.
[34] Wang, J.; Manesh, K. M. Small 2010, 6, 338.
[35] Gao, W.; Uygun, A.; Wang, J. J. Am. Chem. Soc. 2012, 134, 897.
[36] Jonathan, R. H.; Richard, A. L. J.; Anthony, J. R.; Tim, G.; Reza, V.; Ramin, G. Phys. Rev. Lett. 2007, 99, 048102-1.
[37] Ge, Y. E.; Wang, T.; Zheng, M. F.; Jiang, Z. Z.; Wang, S. Nanotechnology 2019, 30, 315702.
[38] Zheng, J.; Wang, J. G.; Xiong, Z.; Wan, Z. H.; Zhan, X. J.; Yang, S. J.; Chen, J. W.; Dai, J.; Tang, J. Y. Adv. Funct. Mater. 2019, 29, 1901768.
[39] Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. J. Am. Chem. Soc. 2016, 138, 6492.
[40] Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. ACS Nano 2012, 6, 10910.
[41] Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Science 2010, 327, 68.
[42] Kirillova, A.; Schliebe, C.; Stoychev, G.; Jakob, A.; Lang, H.; Synytska, A. ACS Appl. Mater. Interfaces 2015, 7, 21218.
[43] Wang, C.; Yin, H.; Dai, S.; Sun, S. Chem. Mater. 2010, 22, 3277.
[44] Valadares, L. F.; Tao, Y. G.; Zacharia, N. S.; Kitaev, V.; Galembeck, F.; Kapral, R.; Ozin, G. A. Small 2010, 6, 565.
[45] Liu, Y. J.; Hu, J. K.; Yu, X. T.; Xu, X. Y.; Gao, Y.; Li, H. M.; Liang, F. X. J. Colloid Interface Sci. 2017, 490, 357.
[46] Xu, X. Q.; Deng, C. H.; Gao, M. X.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. Adv. Mater. 2006, 18, 3289.
文章导航

/