综述

核酸功能化稀土基纳米材料在生物检测中的应用

  • 贾伊祎 ,
  • 王文杰 ,
  • 梁玲 ,
  • 袁荃
展开
  • 湖南大学 化学化工学院 化学生物学与纳米医学研究所 长沙 410082
贾伊祎,2018年于华中农业大学理学院获得学士学位,同年加入湖南大学化学化工学院攻读硕士学位,主要研究兴趣为金属框架化合物在生物医学中的应用;王文杰,2018年于华北电力大学(保定)环境科学与工程学院获得学士学位,同年加入湖南大学化学化工学院攻读硕士学位,主要研究兴趣为无机纳米材料在生物医学中的应用.;袁荃,教授,2004年于武汉大学获学士学位,2009年于北京大学获博士学位,2009年至2012年在佛罗里达大学谭蔚泓课题组进行博士后研究.袁荃教授目前在湖南大学化学化工学院进行研究工作,主要研究兴趣包括功能纳米材料的可控合成及其在生物医学中的应用.

收稿日期: 2020-06-19

  网络出版日期: 2020-07-28

基金资助

项目受国家自然科学基金(No.21904037)、湖南省自然科学基金(Nos.2020JJ4173,2020JJ5038)和长沙市科技计划项目(No.Kq1901030)资助.

Bioassay Applications of Aptamer-Functionalized Rare Earth Nanomaterials

  • Jia Yiyi ,
  • Wang Wenjie ,
  • Liang Ling ,
  • Yuan Quan
Expand
  • Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

Received date: 2020-06-19

  Online published: 2020-07-28

Supported by

Project supported by the National Natural Science Foundation of China (No. 21904037), Natural Science Foundation of Hunan Province, China (Nos. 2020JJ4173, 2020JJ5038) and Changsha Municipal Science and Technology Projects, China (No. Kq1901030).

摘要

体内一些生物分子和离子的水平通常与细胞、组织、器官等结构和功能的变化相关,从而直接影响到疾病的预防、诊断和治疗,因此对体内这些物质的生物检测在医疗和健康领域具有重要的意义.基于稀土基纳米材料构建的纳米荧光探针具有灵敏度高、简单高效、抗干扰能力强等优点,在生物检测方面具有巨大的潜力.对稀土基纳米材料的核酸功能化能够进一步为纳米荧光探针提供更好的特异性识别能力和生物相容性,从而增强其在复杂样品中的生物检测能力.本综述总结了核酸功能化的稀土基纳米材料作为纳米荧光探针在生物检测领域的研究进展,简要介绍了其主要种类和性能、检测机理及检测物质,最后对该领域面临的挑战及未来的发展方向进行了展望.

本文引用格式

贾伊祎 , 王文杰 , 梁玲 , 袁荃 . 核酸功能化稀土基纳米材料在生物检测中的应用[J]. 化学学报, 2020 , 78(11) : 1177 -1184 . DOI: 10.6023/A20060252

Abstract

The levels of some biomolecules and ions in the body are usually related to the structural and functional changes of cells, tissues, organs, etc., which directly affect the prevention, diagnosis, and treatment of diseases. Therefore, in vivo bioassays of these substances are of great significance in medical and healthcare fields. The nano fluorescent probes consisted of rare earth nano materials have advantages of high sensitivity, simplicity, efficiency, and strong anti-interference ability, thus showing great potential in bioassays. The functionalization of aptamers on rare earth nanomaterials can further provide better specific recognition ability and biocompatibility for nano fluorescent probes, thereby enhancing their bioassays ability in complex samples. In this paper, the research progress of aptamer-functionalized rare earth nanomaterials as nano fluorescent probes in the field of bioassays is reviewed, and the main types, properties, detection mechanisms and detection substances are briefly introduced.

参考文献

[1] Pehlivan, Z. S.; Torabfam, M.; Kurt, H.; Ow-Yang, C.; Hildebrandt, N.; Yüce, M. Microchim. Acta 2019, 186, 563.
[2] Escudero, A.; Becerro, A. I.; Carrillo-Carrión, C.; Núñez, N. O.; Zyuzin, M. V.; Laguna, M.; González-Mancebo, D.; Ocaña, M.; Parak, W. J. Nanophotonics 2017, 6, 881.
[3] (a) Wang, G. F.; Peng, Q.; Li, Y. D. Acc. Chem. Res. 2011, 44, 322; (b) Ma, Q. Q.; Wang, J.; Li, Z. H.; Lv, X. B.; Liang, L.; Yuan, Q. Small 2019, 15, 1804969; (c) Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese). (熊麟, 凡勇, 张凡, 化学学报, 2019, 77, 1239.)
[4] Kuningas, K.; Ukonaho, T.; Päkkilä, H.; Rantanen, T.; Rosenberg, J.; Lövgren, T.; Soukka, T. Anal. Chem. 2006, 78, 4690.
[5] Ma, L.; Liu, F. Y.; Lei, Z.; Wang, Z. X. Biosens. Bioelectron. 2017, 87, 638.
[6] Saleh, S. M.; Ali, R.; Hirsch, T.; Wolfbeis, O. S. J. Nanopart. Res. 2011, 13, 4603.
[7] Wang, Y. H.; Shen, P.; Li, C. Y.; Wang, Y.; Liu, Z. Y. Anal. Chem. 2012, 84, 1466.
[8] Tuerk, C.; Gold, L. Science 1990, 249, 505.
[9] Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818.
[10] Yüce, M.; Ullah, N.; Budak, H. Analyst 2015, 140, 5379.
[11] Tu, J. W.; Gan, Y.; Liang, T.; Wang, Q.; Ren, T. L.; Sun, Q. Y.; Wan, H.; Wang, P. Front. Chem. 2018, 6, 333.
[12] Qu, F.; Sun, C.; Lv, X. X.; You, J. M. Microchim. Acta 2018, 185, 359.
[13] Hao, T. T.; Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Kuang, H.; Xu, C. Small 2017, 13, 1603944.
[14] Afzalinia, A.; Mirzaee, M. ACS Appl. Mater. Interfaces 2020, 12, 16076.
[15] Bashmakova, E. E.; Krasitskaya, V. V.; Zamay, G. S.; Zamay, T. N.; Frank, L. A. Talanta 2019, 199, 674.
[16] Jin, B.; Wang, S.; Lin, M.; Jin, Y.; Zhang, S.; Cui, X.; Gong, Y.; Li, A.; Xu, F.; Lu, T. J. Biosens. Bioelectron. 2017, 90, 525.
[17] Kong, R. M.; Zhang, X. B.; Chen, Z.; Tan, W. Small 2011, 7, 2428.
[18] Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Analyst 2010, 135, 1839.
[19] (a) Ang, L. Y.; Lim, M. E.; Ong, L. C.; Zhang, Y. Nanomedicine 2011, 6, 1273; (b) Chen, J.; Zhao, J. X. Sensors 2012, 12, 2414.
[20] (a) Heer, S.; Lehmann, O.; Haase, M.; Güdel, H. U. Angew. Chem., Int. Ed. 2003, 42, 3179; (b) Lin, M.; Zhao, Y.; Wang, S. Q.; Liu, M.; Duan, Z. F.; Chen, Y. M.; Li, F.; Xu, F.; Lu, T. J. Biotechnol. Adv. 2012, 30, 1551; (c) DaCosta, M. V.; Doughan, S.; Han, Y.; Krull, U. J. Anal. Chim. Acta 2014, 832, 1.
[21] Chivian, J. S.; Case, W. E.; Eden, D. D. Appl. Phys. Lett. 1979, 35, 124.
[22] Hong, E.; Liu, L. M.; Bai, L. M.; Xia, C. H.; Gao, L.; Zhang, L. W.; Wang, B. Q. Mater. Sci. Eng., C 2019, 105, 110097.
[23] Auzel, F. Chem. Rev. 2004, 104, 139.
[24] Yao, C. Z.; Yao, C. Z.; Tong, Y. X. TrAC, Trends Anal. Chem. 2012, 39, 60.
[25] Lingeshwar Reddy, K.; Balaji, R.; Kumar, A.; Krishnan, V. Small 2018, 14, 1801304.
[26] Lin, Q. S.; Li, Z. H.; Yuan, Q. Chin. Chem. Lett. 2019, 30, 1547.
[27] (a) Liu, Y. L.; Kuang, J. Y.; Lei, B. F.; Shi, C. S. J. Mater. Chem. 2005, 15, 4025; (b) Pan, Z. W.; Lu, Y. Y.; Liu, F. Nat. Mater. 2011, 11, 58; (c) Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. Nat. Mater. 2014, 13, 418.
[28] Matsuzawa, T.; Aoki, Y.; Takeuchi, N. J. Electrochem. Soc. 1996, 143, 2670.
[29] le Masne de Chermont, Q.; Chaneac, C.; Seguin, J.; Pelle, F.; Maitrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Proc. Nat. Acad. Sci. 2007, 104, 9266.
[30] Tu, T. Z.; Jiang, G. J. J. Mater. Sci.:Mater. Electron. 2018, 29, 3146.
[31] (a) Ge, P. H.; Sun, K. N.; Cheng, Y. Optik 2019, 188, 200; (b) Liu, F.; Liang, Y. J.; Pan, Z. W. Phys. Rev. Lett. 2014, 113, 177401; (c) Li, Z. J.; Huang, L.; Zhang, Y. W.; Zhao, Y.; Yang, H.; Han, G. Nano Res. 2017, 10, 1840; (d) Xue, Z. L.; Li, X. L.; Li, Y. B.; Jiang, M. Y.; Ren, G. Z.; Liu, H. R.; Zeng, S. J.; Hao, J. H. Nanoscale 2017, 9, 7276.
[32] (a) Zhou, H. C. J.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415; (b) Ding, M.; Cai, X.; Jiang, H. L. Chem. Sci. 2019, 10, 10209.
[33] (a) Zhang, S. Y.; Shi, W.; Cheng, P.; Zaworotko, M. J. J. Am. Chem. Soc. 2015, 137, 12203; (b) Wu, S. Y.; Lin, Y. N.; Liu, J.; Shi, W.; Yang, G. M.; Cheng, P. Adv. Funct. Mater. 2018, 28, 1707169; (c) Xia, C.; Xu, Y.; Cao, M. M.; Liu, Y. P.; Xia, J. F.; Jiang, D. Y.; Zhou, G. H.; Xie, R. J.; Zhang, D. F.; Li, H. L. Talanta 2020, 212, 120795; (d) Ren, H. X.; Miao, Y. B.; Zhang, Y. Microchim. Acta 2020, 187, 114; (e) Qu, F.; Ding, Y. R.; Lv, X. X.; Xia, L.; You, J. M.; Han, W. L. Anal. Bioanal. Chem. 2019, 411, 3979.
[34] Cui, Y. J.; Zhang, J.; He, H. J.; Qian, G. D. Chem. Soc. Rev. 2018, 47, 5740.
[35] Rieter, W. J.; Taylor, K. M. L.; Lin, W. J. Am. Chem. Soc. 2007, 129, 9852.
[36] Mahata, P.; Mondal, S. K.; Singha, D. K.; Majee, P. Dalton Trans. 2017, 46, 301.
[37] Juskowiak, B. Anal. Bioanal. Chem. 2011, 399, 3157.
[38] (a) Sakamoto, T.; Ennifar, E.; Nakamura, Y. Biochimie 2018, 145, 91; (b) Zhou, J. H.; Rossi, J. Nat. Rev. Drug Discovery 2017, 16, 181.
[39] Zhang, L.; Lei, J. P.; Liu, J. T.; Ma, F. J.; Ju, H. X. Biomaterials 2015, 67, 323.
[40] Huo, Y.; Qi, L.; Lv, X. J.; Lai, T.; Zhang, J.; Zhang, Z. Q. Biosens. Bioelectron. 2016, 78, 315.
[41] Chen, H. Q.; Yuan, F.; Wang, S. Z.; Xu, J.; Zhang, Y. Y.; Wang, L. Biosens. Bioelectron. 2013, 48, 19.
[42] Duan, N.; Wu, S. J.; Zhu, C. Q.; Ma, X. Y.; Wang, Z. P.; Yu, Y.; Jiang, Y. Anal. Chim. Acta 2012, 723, 1.
[43] Qu, A. H.; Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Kuang, H.; Xu, C. L. Nanoscale 2017, 9, 3865.
[44] Liu, J. M.; Yuan, X, Y.; Liu, H, L.; Cheng, D.; Wang, S. RSC Adv. 2018, 8, 28414.
[45] Wang, Y.; Bao, L.; Liu, Z. H.; Pang, D. W. Anal. Chem. 2011, 83, 8130.
[46] Zhu, H.; Ding, Y.; Wang, A.; Sun, X.; Wu, X. C.; Zhu, J. J. J. Mater. Chem. B 2015, 3, 458.
[47] Liu, X. Y.; Ren, J.; Su, L. H.; Gao, X.; Tang, Y. W.; Ma, T.; Zhu, L. J.; Li, J. R. Biosens. Bioelectron. 2017, 87, 203.
[48] (a) Holmes, P.; James, K. A. F.; Levy, L. S. Sci. Total Environ. 2009, 408, 171; (b)Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol. 2003, 18, 149.
[49] (a) Yang, Y. B.; Yang, X. D.; Yang, Y. J.; Yuan, Q. Carbon 2018, 129, 380; (b) Wang, Q.; Chen, L.; Long, Y. T.; Tian, H.; Wu, J. C. Theranostics 2013, 3, 395.
[50] Wang, J.; Wei, T.; Li, X. Y.; Zhang, B. H.; Wang, J. X.; Huang, C.; Yuan, Q. Angew. Chem. Int. Ed. 2014, 53, 1616.
[51] Zhao, J.; Gao, J.; Xue, W.; Di, Z.; Xing, H.; Lu, Y.; Li, L. L. J. Am. Chem. Soc. 2018, 140, 578.
[52] Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q. Anal. Chem. 2012, 84, 6263.
[53] (a) Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.; Chen, Q. S. J. Agric. Food Chem. 2018, 66, 6188; (b) Wu, S. J.; Duan, N.; Shi, Z.; Fang, C. C.; Wang, Z. P. Talanta 2014, 128, 327.
[54] Xu, Y. X.; Meng, X. F.; Liu, J. L.; Dang, S.; Shi, L. Y.; Sun, L. N. CrystEngComm 2016, 18, 4032.
[55] Guan, X. L.; Li, Z. F.; Wang, L.; Liu, M. N.; Wang, K. L.; Yang, X. Q.; Li, Y. L.; Hu, L. L.; Zhao, X. L.; Lai, S. J.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 1268(in Chinese). (关晓琳, 李志飞, 王林, 刘美娜, 王凯龙, 杨学琴, 李亚丽, 胡丽丽, 赵小龙, 来守军, 雷自强,化学学报, 2019, 77, 1268.)
文章导航

/