研究论文

二乙基锌促进CO2的硅氢化反应以及CO2为C1合成子的有机胺甲酰化或脲化反应

  • 杜重阳 ,
  • 陈耀峰
展开
  • 中国科学院 中国科学院大学 上海有机化学研究所 金属有机化学国家重点实验室 上海 200032

收稿日期: 2020-06-24

  网络出版日期: 2020-08-11

基金资助

项目受国家自然科学基金(No.21821002)和中国科学院先导项目(No.XDB20000000)资助.

ZnEt2 Promoted Hydrosilylation of CO2 and Formylation or Urealation of Amines with CO2 as a C1 Building Block

  • Du Chongyang ,
  • Chen Yaofeng
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China

Received date: 2020-06-24

  Online published: 2020-08-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 21821002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000).

摘要

CO2的固定和转化具有重要研究意义,特别是采用廉价且良好生物相容性的金属催化剂将其转化为有用的有机化合物.本工作报道采用商品化ZnEt2(1.0 mol%)可促进CO2的硅氢化反应生成甲氧基硅醚,以及CO2为C1合成子的有机胺甲酰化或脲化反应生成酰胺或脲类化合物.在1.0 mol% ZnEt2存在下,CO2和(EtO)3SiH发生硅氢化反应,一锅选择性还原为甲氧基硅醚(CH3OSi(OEt)3).考察了反应条件的影响,在1.0 MPa CO2起始压力下,90℃反应7 h,甲氧基硅醚的产率达到约90%.当上述反应体系中存在有机胺时,则发生了CO2为C1合成子的的有机胺甲酰化或脲化反应.当采用二级有机胺为底物时,反应生成酰胺类产物;当一级有机胺为底物时,反应主要生成脲类产物.考察了反应底物取代基的影响,含脂肪基和芳香基的二级有机胺均可发生甲酰化反应,芳香基的对位含给电子取代基时明显有利于该甲酰化反应.含脂肪基和芳香基的一级有机胺均可发生脲化反应,芳香基对位取代基的电子性质对脲化反应的影响规律不如在甲酰化反应中的明显.

本文引用格式

杜重阳 , 陈耀峰 . 二乙基锌促进CO2的硅氢化反应以及CO2为C1合成子的有机胺甲酰化或脲化反应[J]. 化学学报, 2020 , 78(9) : 938 -944 . DOI: 10.6023/A20060268

Abstract

Fixation and transformation of CO2 are of the great importance, especially the conversion of CO2 into valuable organic compounds catalyzed by the cheap and biocompatible metal catalysts. Zinc is an abundant, biocompatible and environmentally friendly element. ZnEt2 is commercial available, and has been widely used as reducing or transmetalation agent in hydrocarboxylation of unsaturated hydrocarbons with CO2. In these reactions, ZnEt2 is generally used in stoichiometric amount or excess amout. This manuscript reports the hydrosilylation of CO2 into methoxysilane promoted by a catalytic amount of ZnEt2 (1.0 mol%), the ZnEt2 promoted formylation or urealation of amines with CO2 as a one-carbon (C1) building block is also described. The hydrosilylation of CO2 into methoxysilane (CH3OSi(OEt)3) with (EtO)3SiH as a hydrosilylation reagent is affected by CO2 pressure, ZnEt2 amount, reaction temperature and reaction time. Under the reaction conditions of 1.0 MPa CO2 (the initial CO2 pressure) and 1.0 mol% ZnEt2, the yield of methoxysilane is up to ca. 90% after 7 h at 90℃, and no solvent is used for this reaction. In the presence of organic amine, the reaction gives formamide or urea instead of methoxysilane. Under 1.5 MPa CO2, 1.0 mol% ZnEt2, 2.4 equiv. (EtO)3SiH and 100℃, a series of secondary amines, both the aromatic ones and the aliphatic ones, can be formylated into formamides. In the formylation of N-methylanilines with different substituents at para-position, the isolated yields of the formylation products are in the order of OMe≈Me>H>F>Cl≈Br>CF3>NO2, indicating the electron-donating group at the para-position of the N-methylanilines is benefit for the formylation reaction. When primary amines are used as the substrates, the reactions prefer to produce urea derivatives under the same reaction conditions. In the urealation reaction, the electronic effect is not as significant as that in the formylation reaction.

参考文献

[1] (a) Quaranta, E.; Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010.
(b) Yu, B.; Liu, Z. M. Chin. Sci. Bull. 2015, 60, 1452(in Chinese). (于博, 刘志敏, 科学通报, 2015, 60, 1452).
(c) Zhang, H.; Sun, H. J.; Li, X. Y. Chin. J. Org. Chem. 2016, 36, 2843(in Chinese). (仉花, 孙宏建, 李晓燕, 有机化学, 2016, 36, 2843).
(d) Yang, Z. Z.; Gao, X.; Liu, Z. M. Curr. Opin. Green Sustain. Chem. 2016, 1, 13.
(e) Zhang, S.; Li, X. D.; He, L. N. Acta Chim. Sinica 2016, 74, 17(in Chinese). (张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17).
(f) Zhang, W. Z.; Zhang, N.; Guo, C. X.; Lv, X. B. Chin. J. Org. Chem. 2017, 37, 1309(in Chinese). (张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309).
(g) Chen, Y. G.; Xu. X. T.; Zhang, K.; Li, Y. Q.; Zhang, L. P.; Fang, P.; Mei, T. S. Synthesis 2018, 50, 35.
(h) Yan, S. S.; Fu, Q.; Liao, L. L.; Sun, G. Q.; Ye, J. H.; Gong, L.; Bo-Xue, Y. Z.; Yu, D. G. Coord. Chem. Rev. 2018, 374, 439.
(i) Zhao, Y. F.; Liu, Z. M. Chin. J. Chem. 2018, 36, 455.
(j) Feng, J. P.; Zeng, S. J.; Feng, J. Q.; Dong, H. F.; Zhang, X. P. Chin. J. Chem. 2018, 36, 961.
(k) Wang, L.; Sun, W.; Liu, C. Chin. J. Chem. 2018, 36, 353.
(l) Cao, Y.; He, X.; Wang, N.; Li, H. R.; He, L. N. Chin. J. Chem. 2018, 36, 644
(m) Chen, Z. Y.; Liu, J. W.; Cui, H, Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242).
(n) Zhang, Z.; Gong, L., Zhou, X. Y.; Yan, S. S.; Li, J.; Yu, D. G. Acta Chim. Sinica 2019, 77, 783(in Chinese). (张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783).
(o) Liu, X. F.; Li, X. Y.; He, L. N. Eur. J. Org. Chem. 2019, 14, 2437.
(p) Wang, S.; Xi, C. J. Chem. Soc. Rev. 2019, 48, 382.
(q) Ran, C. K.; Chen, X. W.; Gui, Y. Y.; Liu, J.; Song, L.; Ren, K.; Yu, D. G. Sci. China Chem. 2020, DOI:10.1007/s11426-020-9788-2.
[2] Fernández-Alvarez, F. J.; Aitani, A. M.; Oro, L. Catal. Sci. Technol. 2014, 4, 611.
[3] (a) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc., Chem. Commun. 1981, 213.
(b) Süss-Fink, G.; Reiner, J. Organomet. Chem. 1981, 221, C36.
(c) Jansen, A.; Görls, H.; Pitter, S. Organometallics 2000, 19, 135.
(d) Jansen, A.; Pitter, S. J. Mol. Catal. A:Chem. 2004, 217, 41.
(e) Deglmann, P.; Ember, E.; Hofmann, P.; Pitter, S.; Walter, O. Chem.-Eur. J. 2007, 13, 2864.
(f) Metsänen, T. T.; Oestreich, M. Organometallics 2015, 34, 543.
[4] (a) Eisenschmid, T. C.; Eisenberg, R. Organometallics 1989, 8, 1822.
(b) Park, S.; Bézier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.
(c) Lalrempuia, R.; Iglesias, M.; Polo, V.; Sanz Miguel, P. J.; Fernández-Alvarez, F. J.; Pérez-Torrente, J. J.; Oro, L. A. Angew. Chem., Int. Ed. 2012, 51, 12824.
[5] (a) Huckaba, A. J.; Hollis, T. K.; Reilly, S. W. Organometallics 2013, 32, 6248.
(b) Itagaki, S.; Yamaguchi, K.;Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347.
[6] Scheuermann, M. L.; Semproni, S. P.; Pappas, I.; Chirik, P. J. Inorg. Chem. 2014, 53, 9463.
[7] (a) González-Sebastiaán, L.; Flores-Alamo, M.; García, J. J. Organometallics 2013, 32, 7186.
(b) Ríos, P.; Curado, N.; López-Serrano, J.; Rodríguez, A. Chem. Commun. 2016, 52, 2114.
(c) Singh, V.; Sakaki, S.; Deshmukh, M. M. Organometallics 2018, 37, 1258.
[8] (a) Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. Org. Lett. 2012, 14, 2642.
(b) Motokura, K.; Kashiwame, D.; Takahashi, N.; Miyaji, A.; Baba, T. Chem.-Eur. J. 2013, 19, 10030.
(c) Zhang, L.; Cheng, J.; Hou, Z. Chem. Commun. 2013, 49, 4782.
(d) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011.
[9] (a) Mitton, S. J.; Turculet, L. Chem.-Eur. J. 2012, 18, 15258.
(b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074.
[10] LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2014, 53, 789.
[11] Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362.
[12] Bertini, F.; Glatz, M.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2019, 9, 632.
[13] (a) Rauch, M.; Parkin, G. J. Am. Chem. Soc. 2017, 139, 18162.
(b) Rauch, M.; Strater, Z.; Parkin, G. J. Am. Chem. Soc. 2019, 141, 17754.
[14] (a) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48, 3322.
(b) Wehmschulte, R. J.; Saleh, M.; Powell, D. R. Organometallics 2013, 32, 6812.
(c) Courtemanche, M. A.; Légaré, M. A.; Rochette, É.; Fontaine, F. G. Chem. Commun. 2015, 51, 6858.
(d) Chen, J.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. J. Am. Chem. Soc. 2016, 138, 5321.
[15] (a) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660.
(b) Jiang, Y.; Blacque, O.; Fox, T.; Berke, H. J. Am. Chem. Soc. 2013, 135, 7751.
[16] (a) Weissermel, K.; Arpe, H. J. Industrial Organic Chemistry, 3rd ed., Wiley-VCH, Weinheim, Germany, 1997(translated by Lindley, C. R.).
(b) Peter, G. M. Wuts. Greene's Protective Groups in Organic Synthesis, 5th ed., Wiley-VCH, Weinheim, 2014.
[17] (a) Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.; Baba, T. Catal. Sci. Technol. 2013, 3, 2392.
(b) Santoro, O.; Lazreg, F.; Minenkov, Y.; Cavallo, L.; Cazin, C. S. J. Dalton Trans. 2015, 44, 18138.
(c) Zhang, S.; Mei, Q. Q.; Liu, H. Y.; Liu, H. Z.; Zhang, Z. P.; Han, B. X. RSC Adv., 2016, 6, 32370.
(d) Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci China Chem. 2019, 62, 256.
[18] (a) Molla, R. A.; Bhanja, P.; Ghosh, K.; Islam, S. S.; Bhaumik, A.; Islam, S. M. ChemCatChem 2017, 9, 1939.
(b) Cui, X. J.; Zhang, Y.; Deng, Y. Q,; Shi, F. Chem. Commun. 2014, 50, 13521.
(c) Luo, X. Y.; Zhang, H. Y.; Ke, Z. G.; Wu, C. L.; Guo, S. E.; Wu, Y. Y.; Yu, B.; Liu, Z. M. Sci. China Chem. 2018, 61, 725.
[19] (a) Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.
(b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.
(c) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 344.
(d) Schmid, L.; Canonica, A.; Baiker, A. Appl. Catal. A 2003, 255, 23.
(e) Munshi, P.; Heldebrant, D. J.; McKoon, E. P.; Kelly, P. A.; Tai, C. C.; Jessop, P. G. Tetrahedron Lett. 2003, 44, 2725.
(f) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. L. Angew. Chem. Int. Ed. 2015, 54, 6186.
(g) Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.
[20] (a) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9777.
(b) Frogneux, X.; Jacquet O.; Cantat, T. Catal. Sci. Technol. 2014, 4, 1529.
(c) Jayarathne, U.; Hazariand, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.
[21] (a) Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; BenDavid, Y.; Milstein, D. ACS Catal. 2017, 7, 2500.
(b) Ke, Z. G.; Yang, Z. Z.; Liu, Z. H.; Yu, B.; Zhao, Y. F.; Guo, S. E.; Wu, Y. Y.; Liu, Z. M. Org. Lett. 2018, 20, 6622.
[22] (a) Itagaki, S.; Yamaguchi, K.; Mizuno, N. J. Mol. Catal. A:Chem. 2013, 366, 347.
(b) Nguyen, T. V. Q.; Yoo, W. J.; Kobayashi, S. Angew. Chem. Int. Ed. 2015, 54, 9209.
(c) Lam, R. H.; McQueen, C. M. A.; Pernik, I.; McBurney, R. T.; Hill, A. F.; Messerle, B. A. Green Chem. 2019, 21, 538.
[23] González-Sebastián, L.; Flores-Alamo, M.; García, M. Organometallics 2015, 34, 763.
[24] (a) Mitsudome, T.; Urayama, T.; Fujita, S.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. ChemCatChem 2017, 9, 3632.
(b) Tang, G.; Bao, H. L.; Jin, C.; Zhong, X. H.; Du, X. L. RSC Adv. 2015, 5, 99678.
[25] (a) Fang, C.; Lu, C. L.; Liu, M. H.; Zhu, Y. L.; Fu, Y.; Lin, B. L. ACS Catal. 2016, 6, 7876.
(b) Nale, D. B.; Bhanage, B. M. Synlett 2016, 27, 1413.
[26] (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.
(b) Das, S.; Bobbink, F. D.; Bulut, S.; Soudani, M.; Dyson, P. J. Chem. Commun. 2016, 52, 2497.
(c) Hao, L. D.; Zhao, Y. F.; Yu, B.; Yang, Z. Z.; Zhang, H. Y.; Han, B. X.; Gao, X.; Liu, Z. M. ACS Catal. 2015, 5, 4989.
(d) Zhao, W. F.; Chi, X. P.; Li, H.; He, J.; Long, J. X.; Xu, Y. F.; Yang, S. Green Chem. 2019, 21, 567.
(e) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem, Int. Ed. 2017, 56, 7425.
(f) Lv, H.; Xing, Q.; Yue, C. T.; Lei Z. Q.; Li, F. W. Chem. Commun. 2016, 52, 6545.
(g) Zhao, T. X.; Zhai, G. W.; Liang, J.; Li, P.; Hu X. B.; Wu, Y. T. Chem. Commun. 2017, 53, 8046.
(h) Gomes, C. D. N.; Jacquet, O.; Villiers, C.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Angew. Chem. Int. Ed. 2012, 51, 187.
(i) Liu, X. F.; Li, X. Y.; Qiao, C.; He, L. N. Synlett 2018, 29, 548.
(j) Wang, M. Y.; Wang, N.; Liu, X. F.; Qiao, C.; He, L. N. Green Chem. 2018, 20, 1564.
(k) Liu, X. F.; Ma, R.; Qiao, C.; Cao H.; He, L. N. Chem. Eur. J. 2016, 22, 16489.
(l) Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N. Angew. Chem. Int. Ed. 2017, 56, 7425.
[27] Shi, F.; Zhang, Q. H.; Ma, Y. B.; He, Y.; Deng, Y. Q. J. Am. Chem. Soc. 2005, 127, 4182.
[28] (a) Shi, F.; Deng, Y. Q.; SiMa, T. L.; Peng, J. J.; Gu, Y. L.; Qiao, B. T. Angew. Chem. Int. Ed. 2003, 42, 3257.
(b) Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Green Chem. 2007, 9, 158.
[29] Tamura, M.; Ito, K.; Nakagawa, Y.; Tomishige, K. J. Catal. 2016, 343, 75.
[30] Jurado-Vazquez, T.; García, J. J. Catal. Lett. 2018, 148, 1162.
[31] Xu, M. T.; Jupp, A. R.; Stephan, D. W. Angew. Chem. Int. Ed. 2017, 56, 14277.
[32] Ogura, H.; Takeda, K.; Tokue, R.; Kobayashi, T. Synthesis 1978, 394.
[33] Cooper, C. F.; Falcone, S. J. Synth. Commun. 1995, 25, 2467.
[34] Yamazaki, N.; Higashi, F.; Iguchi, T. Tetrahedron Lett. 1974, 13, 1191.
[35] Enthaler, S.; Wu, X. F. Zinc Catalysis:Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2015.
[36] (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008.
(b) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.
(c) Shimizu, K.; Sato, Y.; Mori, M.; Takimoto, M. Org. Lett. 2005, 7, 195.
(d) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.
(e) Li, S.; Yuan, W.; Ma, S. M. Angew. Chem., Int. Ed. 2011, 50, 2578.
(f) Yuan, R.; Lin, Z. Organometallics 2014, 33, 7147.
[37] (a) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018.
(b) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.
(c) Xiao, Y. L.; Wang, Z.; Ding, K. L. Chem. Eur. J. 2005, 11, 3668.
(d) Reiter, M.; Vagin, S.; Kronast, A.; Jandl, C.; Rieger, B. Chem. Sci. 2017, 8, 1876.
[38] (a) Sattler, W.; Parkin, G. J. Am. Chem. Soc. 2012, 134, 17462.
(b) Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed. 2012, 51, 7323.
(c) Rit, A.; Zanardi, A.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2014, 53, 13273.
(d) Specklin, D.; Fliedel, C.; Gourlaouen, C.; Bruyere, J. C.; Avilés, T.; Boudon, C.; Ruhlmann, L.; Dagorne, S. Chem.-Eur. J. 2017, 23, 5509.
(e) Specklin, D.; Hild, F.; Fliedel, C.; Gourlaouen, C.; Veiros, L. F.; Dagorne, S. Chem.-Eur. J. 2017, 23, 15908.
(f) Tüchler, M.; Gärtner, L.; Fischer, S.; Boese, A. D.; Belaj, F.; Mösch-Zanetti, N. C. Angew. Chem. Int. Ed. 2018, 57, 6906.
[39] Jacquet, O.; Frogneux, X.; Das Neves Gomes, C.; Cantat, T. Chem. Sci. 2013, 4, 2127.
[40] Luo, R. C.; Lin, X. W.; Chen, Y. J.; Zhang, W. Y.; Zhou, X. T.; Ji, H. B. ChemSusChem 2017, 10, 1224.
[41] Feng, G. Q.; Du, C. Y.; Xiang, L.; Rosal, I. D.; Li, G. Y.; Leng, X. B.; Chen, E. Y.-X.; Maron, L.; Chen, Y. F. ACS Catal. 2018, 8, 4710.
[42] Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057.
[43] George, H. W. US 2530367, 1950[Chem. Abstr. 1950, 66, 790230].
[44] Dobrovetsky, R.; Stephan, D. W. Isr. J. Chem. 2015, 55, 206.
[45] Heyn, H. H. Advances in Inorganic Chemistry, Vol. 66, Eds.:Jacobs, I.; Carr, R. H., Elsevier, 2014, Chapter three, pp. 83~115.
文章导航

/