研究论文

PEDOT的电化学合成及其在固态染料敏化太阳能电池中的应用研究

  • 朱从潭 ,
  • 杨英 ,
  • 赵北凯 ,
  • 林飞宇 ,
  • 罗媛 ,
  • 马书鹏 ,
  • 朱刘 ,
  • 郭学益
展开
  • a 中南大学冶金与环境学院 长沙 410083;
    b 有色金属资源循环利用湖南省重点实验室 长沙 410083;
    c 有色金属资源循环利用湖南省工程研究中心 长沙 410083;
    d 浙江大学材料科学与工程学院 杭州 310000;
    e 广东先导稀材股份有限公司 清远 511517;
    f 清远先导材料有限公司 清远 511517

收稿日期: 2020-06-29

  网络出版日期: 2020-08-28

基金资助

项目受国家自然科学基金(No.61774169)和清远市创新创业科研团队项目(No.2018001)资助.

Electrochemical Synthesis of PEDOT and Its Application in Solid-State Dye-sensitized Solar Cells

  • Zhu Congtan ,
  • Yang Ying ,
  • Zhao Beikai ,
  • Lin Feiyu ,
  • Luo Yuan ,
  • Ma Shupeng ,
  • Zhu Liu ,
  • Guo Xueyi
Expand
  • a School of Metallurgy and Environment, Central South University, Changsha 410083, China;
    b Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083, China;
    c Hunan Engineering Research Center of Nonferrous Metal Resources Recycling, Changsha 410083, China;
    d School of Materials Science and Engineering, Zhejiang University, Hangzhou 310000, China;
    e First Rare Materials Co., Ltd, Qingyuan 511517, China;
    f First Materials Co., Ltd, Qingyuan 511517, China

Received date: 2020-06-29

  Online published: 2020-08-28

Supported by

Project supported by the National Natural Science Foundation of China (No. 61774169) and Qingyuan Innovation and Entrepreneurship Research Team Project (No. 2018001).

摘要

本工作主要围绕PEDOT的合成及其在固态染料敏化太阳能电池对电极中的应用开展研究,重点研究了循环伏安法电化学沉积过程中循环次数(10~50次)对PEDOT薄膜的形貌、厚度及光学性质的影响.通过红外光谱、SEM、紫外-可见吸收光谱表征了PEDOT的结构、形貌及光性质;通过J-V、动态调制光电流谱(IMPS)/光电压谱(IMVS)以及Tafel测试表征了基于PEDOT透明对电极染料敏化太阳能电池的光电化学性能.结果表明:采用循环伏安法电沉积合成PEDOT制备固态染料敏化太阳能电池对电极时,CV循环30~40次之间时可以获得最佳的光电性能,固态器件的光电转换效率为5.34%,这是因为在该条件下所制备的PEDOT具有均匀致密的表面、较好的光学性质以及较高的光电催化性能(J0=2.51×10-3 A·cm-2),使得器件可以获得较大的扩散系数(Dn=28.80 μm2·ms-1)和载流子扩散长度(L=21.41 μm),有利于电荷的传输.当CV循环次数大于40次时,PEDOT薄膜会在掺氟的SnO2透明导电玻璃(FTO)表面发生溶解、脱附,从而使得其光电催化性能下降.在双面光照条件下,以电沉积PEDOT作为透明对电极的器件光电性能提升了20%左右.

本文引用格式

朱从潭 , 杨英 , 赵北凯 , 林飞宇 , 罗媛 , 马书鹏 , 朱刘 , 郭学益 . PEDOT的电化学合成及其在固态染料敏化太阳能电池中的应用研究[J]. 化学学报, 2020 , 78(10) : 1102 -1110 . DOI: 10.6023/A20060275

Abstract

In this paper, the synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) by cyclic voltammetry (CV) electrochemical deposition and its application in the counter electrode of solid-state dye-sensitized solar cells were studied. The influence of cycle times (10~50 times) on the morphology, thickness and optical properties of PEDOT films were explored by Fourier transform infrared spectroscopy (FTIR), atomic force microscope (AFM), scanning electron microscope (SEM) and ultraviolet-visible spectroscopy (UV-Vis). The photoelectrochemical properties of solid-state dye-sensitized solar cells based on PEDOT transparent counter electrode were characterized by J-V, electrochemical impedance spectroscopy (EIS), intensity modulated photocurrent spectrum/photovoltage spectrum (IMPS/VS) and Tafel analysis. The results showed that an un-uniform film with the thickness of 0.5 μm and light transmittance of 80% was formed when CV cycle times was 10, where the PEDOT film was not completely covered on the substrate. When the CV cycles reached 30~40, a uniform and dense transparent film was obtained and the highest photoelectric conversion efficiency of the corresponding solid-state dye-sensitized solar cells reached 5.34%. This is because uniform and dense surface, good optical properties and high photo-electric catalysis properties (J0=2.51×10-3 A·cm-2) for I3- in the electrolyte, made the device obtain larger diffusion coefficient (Dn=28.80 μm2·ms-1) and carrier diffusion length (L=21.41 μm), which were favorable for charge transfer. When the number of CV cycles was further increased to 50 times, showing greater roughness, the PEDOT film was no longer growing uniformly. The PEDOT film deposited on the FTO surface underwent some dissolution and desorption, the PEDOT film became uneven, and the catalytic activity of PEDOT electrode to I3- in electrolyte was reduced. The device with PEDOT transparent counter electrode film deposited by cyclic voltammetry could also achieve double-side illumination with good catalytic activity to the electrolyte. Under the condition of double-side illumination, the photoelectric performance of the device using electrodeposited PEDOT as transparent counter electrode was improved by about 20%. The improvement of the photoelectric performance of the device is mainly due to the increase in the absorption of photons by the double-sided illumination.

参考文献

[1] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Prog. Photovolt. 2010, 18, 144.
[2] Luque, A.; Martí, A. Sol. Energ. Mat. Sol. C 2010, 94, 287.
[3] König, D.; Casalenuovo, K.; Takeda, Y.; Conibeer, G.; Guillemoles, J. F.; Patterson, R.; Huang, L. M.; Green, M. A. Physica E 2010, 42, 2862.
[4] Davies, P. A.; Luque, A. Sol. Energ. Mat. Sol. C 1994, 33, 11.
[5] Narayanaswamy, A.; Chen, G. Appl. Phys. Lett. 2003, 82, 3544.
[6] Coutts, T. J.; Fitzgerald, M. C. Phys. World 1998, 11, 49.
[7] Bu, L.-L. M.S. Thesis, Huazhong University of Technology, Wuhan, 2016(in Chinese). (步玲玲, 硕士论文, 华中科技大学, 武汉, 2016.)
[8] Li, Q. H.; Wang, Y. M.; Li, W. J.; Zhang, T. T.; Cai, L.; Cheng, Z. X.; Li, H. Acta Optica Sin. 2012, 32, 152(in Chinese). (李清华, 王应民, 李文杰, 张婷婷, 蔡莉, 程泽秀, 李禾, 光学学报, 2012, 32, 152.)
[9] Lan, Z.; Wu, J. H. Prog. Chem. 2010, 22, 2248(in Chinese). (兰章, 吴季怀, 化学进展, 2010, 22, 2248.)
[10] Pan, B.; Zhu, Y. Z.; Qiu, C. J.; Wang, B.; Zheng, J. Y. Acta Chim. Sinica 2018, 76, 215(in Chinese). (潘彬, 朱义州, 邱昌娟, 王冰,郑健禺, 化学学报, 2018, 76, 215.)
[11] Tian, Y. J.; Cai, N.; Chen, Y. T.; Qian, S. N.; Huo, Y. P. Chin. J. Org. Chem. 2018, 38, 1085(in Chinese). (田亚娟, 蔡宁, 陈亚通, 钱赛男, 霍延平, 有机化学, 2018, 38, 1085.)
[12] Wu, W. J.; Xin, C. H.; Pang, Z. H.; Xu, L.; Li, C. Acta Chim. Sinica 2019, 77, 545(in Chinese). (武文俊, 信成浩, 逄智涵, 徐梁, 李晨,化学学报, 2019, 77, 545.)
[13] Yuan, C. H.; Gao, X. Y.; Ma, J. F. Mater. Rev. 2017, 031, 223(in Chinese). (袁盛华, 高翔宇, 马金福, 材料导报:纳米与新材料专辑, 2017, 031, 223.)
[14] Green, M. A.; Emery, K.; King, D. L.; Igari, S.; Warta, W. Prog. Photovolt. 2004, 12, 320.
[15] Fortuin, S.; Stryi-Hipp, G. Solar Collectors, Non-concentrating. Solar Energy, Springer, New York, 2013, pp. 79~96.
[16] Lee, K. M.; Chen, P. Y.; Hsu, C. Y.; Huang, J. H.; Ho, W. H.; Chen, H. C.; Ho, K. C. J. Power Sources 2009, 188, 313.
[17] Pringle, J. M.; Armel, V.; Macfarlane, D. R. Chem. Commun. 2010, 46, 5367.
[18] Lee, T. H.; Do, K.; Lee, Y. W.; Jeon, S. S.; Kim, C.; Ko, J.; Im, S. S. J. Mater. Chem. 2012, 22, 21624.
[19] Xiao, Y.; Wu, J.; Yue, G.; Lin, J.; Huang, M.; Lan, Z.; Fan, L. Electrochim. Acta 2012, 85, 432.
[20] Rajagopal, P.; Mathan, K. P.; Muthuraaman, B. RSC Adv. 2020, 10, 4521.
[21] Zhang, W. W.; Wu, Y. Z.; Bahang, H. W.; Cao, Y.; Yi, C.; Saygili, Y.; Luo, J.; Liu, Y.; Kavan, L.; Moser, J.-E.; Hagfeldt, A.; Tian, H.; Zakeeruddin, S. M.; Zhu, W. H.; Gratzel, M. Energy Environ. Sci. 2018, 11, 1779.
[22] Jang, Y. J.; Thogiti, S.; Lee, K.; Kim, G. H. Crystals 2019, 9, 452.
[23] Malinauskas, T.; Daiva, T.-L.; Rüdiger, S.; Maryte, D.; Robert, S.; Henrike, W.; Vygintas, J.; Ingmar, B.; Vytautas, G. ACS Appl. Mater. Inter. 2015, 7, 11107.
[24] Zhang, T. M.S. Thesis, Jinan University, Guangzhou, 2015(in Chinese). (张天, 硕士论文, 暨南大学, 广州, 2015.)
[25] Xie, Y.; Jiang, F. X.; Xu, J. K. J. Funct. Mater. 2009, 40, 1987(in Chinese). (谢宇, 蒋丰兴, 徐景坤, 功能材料, 2009, 40, 1987.)
[26] Li, X.-D. Ph.D. Dissertation, East China Normal University, Shanghai, 2011(in Chinese). (李晓冬, 博士论文, 华东师范大学, 上海, 2011.)
[27] Ahmadi, S.; Asim, N.; Alghoul, M.; Hammadi, F.; Saeedfar, K.; Ludin, N.; Zaidi, S.; Sopian, K. Inter. J. Photoenergy 2014, 2014, 1.
[28] Yang, Y.; Wang, W. J. Power Sources 2015, 293, 577.
[29] Cui, C. C.; Wang, M. J. Hefei Univ. Technol. Nat. Sci. Ed. 2012, 11, 1541(in Chinese). (崔琛琛, 王茗, 合肥工业大学学报(自然科学版), 2012, 11, 1541.
[30] Lattach, Y.; Deniset-Besseau, A.; Guigner, J.-M.; Remit, S. Radiat. Physic. Chem. 2013, 82, 44.
[31] Beverina, L.; Drees, M.; Facchetti, A.; Salamone, M.; Ruffo, R.; Pagani, G. A. Eur. J. Org. Chem. 2011, 5555.
[32] Azimi, H.; Senes, A.; Scharber, M. C.; Hingerl, K.; Brabec, C. J. Adv. Energ. Mater. 2011, 1, 1162.
[33] Dkhissi, A.; Brocorens, P.; Lazzaroni, R. Chem. Phys. Lett. 2006, 432, 167.
[34] Ohira, M.; Koizumi, Y.; Nishiyama, H.; Tomita, I.; Inagi, S. Polym. J. 2017, 49, 163.
[35] Ahmad, S.; Yum, J.-H.; Zhang, X.; Gratzel, M.; Butta, H.-J.; Nazeeruddin, M. K. J. Mater. Chem. 2010, 20, 1654.
[36] Hong, C. K.; Ko, H. S.; Han, E. M.; Park, K. H. Int. J. Electrochem. Sci. 2015, 10, 5521.
[37] Guo, X.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D.; Zhou, C.; Shen, J.; Hong, J.; Yang, Y. Mater. Today Energy 2017, 5, 320.
[38] Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.; Guo, X. Nano Energy 2016, 26, 123.
[39] Yang, Y.; Chen, T.; Pan, D. Q.; Zhang, Z.; Guo, X. Y. Acta Chim. Sinica 2018, 76, 681(in Chinese). (杨英, 陈甜, 潘德群, 张政, 郭学益, 化学学报, 2018, 76, 681.)
[40] Lagemaat, J. V. D.; Frank, A. J. J. Phys. Chem. B 2001, 105, 11194.
[41] Oekermann, T.; Zhang, D.; Yoshida, T.; Minoura, H. Crit. Care Nurse 2004, 33, 17.
[42] Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69.
[43] Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.-H.; Sun, Z.-B.; Wang, J.-H.; Zhou, C.-H.; Wang, Y.-W.; Guo, X.-Y.; Chu, P. K.; Yu, X.-F. Adv. Mater. 2016, 28, 8937.
[44] Gao, J.; Yang, Y.; Yan, J.; Zhang, Z.; Pan, D.; Dai, Q.; Guo, X. J. Alloy. Compd. 2018, 764, 482.
文章导航

/