研究论文

两亲性聚氨基酸三嵌段共聚物构筑pH/溶剂可控多级纳米结构

  • 李荣烨 ,
  • Khiman Mehul ,
  • 盛力 ,
  • 孙静
展开
  • 青岛科技大学高分子科学与工程学院 青岛 266042

收稿日期: 2020-08-01

  网络出版日期: 2020-09-04

基金资助

项目受国家自然科学基金(Nos.51722302 and 21674054)和山东省自然科学基金(No.ZR2019JQ17)资助.

pH/Solvent Tunable Hierarchical Nanostructures Assembled from an Amphiphilic Polypeptide-containing Triblock Copolymer

  • Li Rongye ,
  • Khiman Mehul ,
  • Sheng Li ,
  • Sun Jing
Expand
  • College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Received date: 2020-08-01

  Online published: 2020-09-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51722302 and 21674054) and the Natural Science Foundation of Shandong Province (No. ZR2019JQ17).

摘要

通过开环聚合(ROP)和原子转移自由基聚合(ATRP)合成了一种pH响应性三嵌段共聚物聚乙二醇-b-聚赖氨酸-b-聚苯乙烯(PEG-b-PLL-b-PS),在水-有机溶剂混合溶液中进行组装,并采用透射电子显微镜(TEM)、原子力显微镜(AFM)和衰减全反射红外光谱法(ATR-IR)表征.该三嵌段共聚物在四氢呋喃(THF)与水的混合溶剂(VV=1:1)中可组装成疏水性聚苯乙烯为核、亲水性聚赖氨酸和聚乙二醇分别为内壳和外壳的球状胶束.采用TEM和AFM发现该球状胶束在四氢呋喃(THF)水溶液中退火7 d后可进一步转变为纤维状结构.进一步除去THF后,可恢复至粒径略小的冻结球状胶束.另外,球状胶束的粒径随着pH的增加而增加,当pH为13时,聚赖氨酸的二级结构由无规卷曲构象过渡到α-螺旋构象,聚集体由球形结构过渡到空心囊泡.溶液经透析后可使囊泡恢复至球状胶束.

本文引用格式

李荣烨 , Khiman Mehul , 盛力 , 孙静 . 两亲性聚氨基酸三嵌段共聚物构筑pH/溶剂可控多级纳米结构[J]. 化学学报, 2020 , 78(11) : 1235 -1239 . DOI: 10.6023/A20080339

Abstract

Similar to natural proteins, polypeptides can form secondary structures depending on their physical properties. Many efforts have been made towards the self-assembly of triblock copolymer containing polypeptide as an important component to construct hierarchical structures by utilizing the pH-responsive conformation transformation. In this work, a pH-responsive poly(ethylene glycol)-b-poly(L-lysine)-b-poly(styrene) (PEG-b-PLL-b-PS) triblock copolymer was prepared via a combination of controlled ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP). In the triblock copolymer, PLL is water-soluble in acidic solution with random coil conformation, but becomes insoluble helix in alkaline solution. PEG has excellent water solubility that can exhibit protein-resistant property. PS serves as hydrophobic part. Self-assembly of the polymer was examined by transmission electron microscopy (TEM), atomic force microscopy (AFM) and attenuated total reflection-infrared spectrometer (ATR-IR). The triblock copolymer forms spherical micelles in 1:1 volume ratio of tetrahydrofuran-water mixed solvent, in which the hydrophobic PS segment forms a core and the two hydrophilic segments PLL and PEG serve as shell and corona, respectively. The spheres as the subunits further transform into hierarchical 1D fiber-like structure in the presence of THF after 7 d of aging, confirmed by both TEM and AFM techniques. Upon removing THF, the spherical shape was re-obtained with slightly smaller diameter, so called “frozen micelles”. Further, the diameter of the spheres increases with pH increasing. A sphere-to-vesicle transition was observed at pH 13 as the secondary conformation of PLL transforms from coil to α-helix. The dialysis of these solutions can convert the vesicles back into spherical morphology with slightly smaller diameter.

参考文献

[1] Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969.
[2] Qiu, H.; Gao, Y.; Boott, C. E.; Gould, O. E. C.; Harniman, R. L.; Miles, M. J.; Webb, S. E. D.; Winnik, M. A.; Manners, I. Science 2016, 352, 697.
[3] Qiu, H.; Hudson, Z. M.; Winnik, M. A.; Manners, I. Science 2015, 347, 1329.
[4] Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. Nature 2013, 503, 247.
[5] Xu, X.; Wu, G.; Zhang, J.; Wang, Y.; Fan, Y.; Ma, J. Acta Chim. Sinica 2008, 66, 1102(in Chinese). (徐旭, 伍国琳, 张洁, 王亦农, 范云鸽, 马建标, 化学学报, 2008, 66, 1102.)
[6] Cademartiri, L.; Bishop, K. J. M. Nat. Mater. 2015, 14, 2.
[7] Walther, A.; Müller, A. H. Chem. Rev. 2013, 113, 5194.
[8] Movassaghian, S.; Merkel, O. M.; Torchilin, V. P. Wiley Interdiplinary Reviews Nanomedicine & Nanobiotechnology 2015, 7, 691.
[9] Jiang, J.; Shen, N.; Ci, T.; Tang, Z.; Gu, Z.; Li, G.; Chen, X. Adv. Mater. 2019, 31, 1.
[10] Li, Z.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Science 2004, 306, 98.
[11] Kubowicz, S.; Baussard, J. F.; Lutz, J. F.; Thünemann, A. F.; Berlepsch, H. V.; Laschewsky, A. Angew. Chem. Int. Ed. 2005, 44, 5262.
[12] Gröschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Müller, A. H. Nat. Commun. 2012, 3, 710.
[13] Zhuang, Z.; Jiang, T.; Lin, J.; Gao, L.; Yang, C.; Wang, L.; Cai, C. Angew. Chem. Int. Ed. 2016, 55, 12522.
[14] Zhang, L.; Eisenberg, A. Science 1995, 268, 1728.
[15] Hadjichristidis, N.; Hirao, A.; Tezuka, Y.; Prez, F. D. Wiley InterScience, John Wiley & Sons Inc., New York, 2011, p. 823.
[16] Zhang, J.; Chen, X.; Wei, H.; Wan, X. Chem. Soc. Rev. 2013, 42, 9127.
[17] Chen, P.; Qiu, M.; Deng, C.; Meng, F.; Zhang, J.; Cheng, R.; Zhong, Z. Biomacromolecules 2015, 16, 1322.
[18] Ran, M.; Shi, D.; Dong, H.; Chen, M.; Zhao, Z. Acta Chim. Sinica 2015, 73, 1047(in Chinese). (冉茂双, 施冬健, 董罕星, 陈明清, 赵增亮, 化学学报, 2015, 73, 1047.)
[19] Sheng, L.; Chen, H.; Fu, W.; Li, Z. Acta Polym. Sinica 2015, 8, 982(in Chinese). (盛力, 陈红, 符文鑫, 李志波, 高分子学报, 2015, 8, 982.)
[20] Sheng, L.; Chen, H.; Fu, W.; Li, Z. Langmuir 2015, 31, 11964.
[21] Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Nat. Chem. 2017, 9, 785.
[22] Yu, K.; Eisenberg, A. Macromolecules 1996, 29, 6359.
[23] Betthausen, E.; Hanske, C.; Müller, M.; Fery, A.; Schacher, F. H.; Müller, A. H. E.; Pochan, D. J. Macromolecules 2014, 47, 1672.
[24] Zhang, S.; Li, Q.; Lin, J.; Cai, C.; Wang, L. Acta Polym. Sinica 2017, 2, 294(in Chinese). (张朔, 李庆, 林嘉平, 蔡春华, 王立权, 高分子学报, 2017, 2, 294.)
[25] Bhargava, P.; Tu, Y.; Zheng, J.; Xiong, H.; Quirk, R. P.; Cheng, S. Z. D. J. Am. Chem. Soc. 2007, 129, 1113.
[26] Özdemir, C.; Güner, A. Eur. Polym. J. 2007, 43, 3068.
[27] Rozenberg, M.; Shoham, G. Biophys. Chem. 2007, 125, 166.
[28] Prestrelski, S. J.; Tedeschi, N.; Arakawa, T.; Carpenter, J. F. Biophys. J. 1993, 65, 661.
[29] Mauerer, A.; Lee, G. Eur. J. Pharm. Sci. 2006, 62, 131.
[30] Jain, S.; Bates, F. S. Macromolecules 2004, 37, 1511.
[31] Rager, T.; Meyer, W. H.; Wegner, G. Macromol. Chem. Phys. 1999, 200, 1672.
[32] Stam, J. V.; Creutz, S.; Schryver, F. C. D.; Jérôme, R. Macromolecules 2000, 33, 6388.
[33] Zhang, L.; Barlow, R. J.; Eisenberg, A. Macromolecules 1995, 28, 6055.
[34] Tuzar, Z.; Kratochvil, P. Surf. Colloid Sci. 1993, 15, 1.
[35] Munk, P. Solvents and Self-Organization of Polymers, Springer, Netherlands, New York, 1996, p. 19.
[36] Zhang, Y.; Jiang, M.; Zhao, J.; Wang, Z.; Dou, H.; Chen, D. Langmuir 2005, 21, 1531.
[37] Lei, L.; Gohy, J.; Willet, N.; Zhang, J.; Varshney, S.; Jérôme, R. Macromolecules 2004, 37, 1089.
[38] Jada, A.; Hurtrez, G.; Siffert, B.; Riess, G. Macromol. Chem. Phys 1996, 197, 3697.
[39] Zhang, L.; Yu, K.; Eisenberg, A. Science 1996, 272, 1777.
[40] Ray, J. G.; Naik, S. S.; Hoff, E. A.; Johnson, A. J.; Ly, J. T.; Easterling, C. P.; Patton, D. L.; Savin, D. A. Macromol. Chem. Phys. 2012, 33, 819.
[41] Naik, S. S.; Ray, J. G.; Savin, D. A. Langmuir 2011, 27, 7231.
[42] Zhang, W.; He, J.; Liu, Z.; Ni, P.; Zhu, X. J. Polym. Sci. Part A:Polym. Chem. 2010, 48, 1079.
[43] Jackson, M.; Mantsch, H. H. Crit. Rev. Biochem. Mol. 1995, 30, 95.
[44] Dzwolak, W.; Smirnovas, V. Biophys. Chem. 2005, 115, 49.
[45] Mirtič, A.; Grdadolnik, J. Biophys. Chem. 2013, 175-176, 47.
文章导航

/