综述

镍催化构筑C(sp3)—C(sp3)键反应研究进展

  • 程磊 ,
  • 周其林
展开
  • 南开大学化学学院元素有机化学研究所 天津 300071
程磊,1993年出生于湖北钟祥,2015年在吉林大学获得学士学位,目前在周其林教授指导下攻读博士学位.研究兴趣是镍催化烯烃参与的不对称碳碳成键反应;周其林,南开大学化学学院教授.1982年在兰州大学化学系获得学士学位,1987年在中科院上海有机化学研究所获得博士学位,导师黄耀曾研究员.1988年至1996年先后在华东理工大学、德国Max-Planck研究所、瑞士Basel大学和美国Trinity大学做博士后研究.1996年加入华东理工大学,任副教授、教授,1999年受聘教育部"长江学者"计划特聘教授,任南开大学元素有机化学研究所教授.2009年被增选为中国科学院院士.主要研究领域为金属有机化学、有机合成方法学、不对称催化等.

收稿日期: 2020-07-29

  网络出版日期: 2020-09-16

基金资助

项目受国家自然科学基金(Nos.21790332,21790330)资助.

Advances on Nickel-Catalyzed C(sp3)-C(sp3) Bond Formation

  • Cheng Lei ,
  • Zhou Qilin
Expand
  • Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

Received date: 2020-07-29

  Online published: 2020-09-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21790332, 21790330).

摘要

过渡金属催化的偶联反应是构筑C-C键的高效方法,在有机合成中得到了广泛的应用.然而,相对于Heck反应、Negishi偶联与Suzuki偶联等构筑C(sp2)-C(sp2)键的反应,过渡金属催化的构筑C(sp3)-C(sp3)键的偶联反应较难进行,发展较晚.近年来,烷基-烷基C-C键偶联反应受到广泛的重视,一些高效催化剂被开发出来,其中镍催化剂展示出独特的催化活性和选择性.本文将综述镍催化烷基-烷基C-C键偶联反应最新研究进展,主要包括烷基亲电试剂与金属有机试剂交叉偶联反应、导向基参与的C(sp3)-H键活化的偶联反应、镍-光反应催化剂协同催化偶联反应、烷基亲电试剂与亲电试剂的还原偶联反应和镍催化烯烃加成反应等.

本文引用格式

程磊 , 周其林 . 镍催化构筑C(sp3)—C(sp3)键反应研究进展[J]. 化学学报, 2020 , 78(10) : 1017 -1029 . DOI: 10.6023/A20070335

Abstract

Transition metal-catalyzed coupling reactions are powerful synthetic methods for the C-C bond formation. Many coupling reactions such as Heck reaction, Negishi coupling, and Suzuki coupling have been widely applied in the syntheses of pharmaceuticals, functional materials and fine chemicals. In those coupling reactions, a C(sp2)-C(sp2) bond is formed in high efficiency and selectivity. However, in contrast to the C(sp2)-C(sp2) couplings, the C(sp3)-C(sp3) couplings are more difficult and develop late. Because the C(sp3)-C(sp3) bonds are ubiquitous in organic compound, the C(sp3)-C(sp3) bond formation is the central task of research in organic chemistry. In the past two decades, a great effort has been devoted to the development of cross-coupling reactions between alkyls to construct C(sp3)-C(sp3) bonds and impressive progress has been achieved. Among the transition metal catalysts that have been used in the construction of C(sp3)-C(sp3) bonds, nickel was found to be a preferable one, exhibiting unique activity and selectivity. Nickel catalysts promote the activation of alkyl electrophiles via radical catalytic cycles and inhibit and/or manipulate β-H elimination reactions. Nickel has several variable valence states and can flexibly participate in tandem reactions and reductive cross-coupling reactions. All these characteristic natures contribute to the success of nickel catalysts in the construction of C(sp3)-C(sp3) bonds. In this review, we will describe the advances on the nickel-catalyzed C(sp3)-C(sp3) bond-forming reactions. The main contents of this review include:the cross-coupling of alkyl electrophiles with organometallic reagents; the coupling involving a C(sp3)-H bond activation in the presence of directing group; the coupling co-catalyzed by nickel and photocatalyst; the reductive coupling of two alkyl electrophiles; and the additions of nucleophiles or electrophiles to alkenes such as hydroalkylation and difunctionalization of alkenes. The review will focus on the latest developments of nickel-catalyzed alkyl coupling reactions in the past two decades. The mechanisms of each reaction are discussed in detail for understanding the reactions.

参考文献

[1] For reviews on nickel catalysis:(a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature, 2014, 509, 299. (b) Ananikov, V. P. ACS Catal. 2015, 5, 1964. (c) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J. Chem. Rev. 2020, 120, 6124. (d) Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230. (e) Modern Organonickel Chemistry, Eds.:Tamaru, Y., Wiley-VCH, Weinheim, 2005. (f) Nickel Catalysis in Organic Synthesis:Methods and Reactions, Eds.:Ogoshi, S., Wiley-VCH, Weinheim, 2020.
[2] Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem. Int. Ed. 1996, 34, 2723.
[3] (a) Giovannini, R.; Stüdemann, T.; Dussin, G.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 2387. (b) Giovannini, R.; Stüdemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. Org. Chem. 1999, 64, 3544. (c) Piber, M.; Jensen, A. E.; Rottländer, M.; Knochel, P. Org. Lett. 1999, 1, 1323.
[4] Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222.
[5] Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 5749.
[6] Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726.
[7] (a) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 9602. (b) Smith, S. W.; Fu, G. C. Angew. Chem. Int. Ed. 2008, 47, 9334. (c) Vechorkin, O.; Hu, X. Angew. Chem. Int. Ed. 2009, 48, 2937.
[8] Fisher, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.
[9] Binder, J. T.; Cordier, C. J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 17003.
[10] (a) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482. (b) Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756. (c) Lundin, P. M.; Esquivias, J.; Fu, G. C. Angew. Chem. Int. Ed. 2009, 48, 154. (d) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645. (e) Liang, Y.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 5520. (f) Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11908. (g) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154. (h) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 5794. (i) Huo, H.; Gorsline, B. J.; Fu, G. C. Science 2020, 367, 559.
[11] Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. Science, 2016, 354, 1265.
[12] Schwarzwalder, G. M.; Matier, C. D.; Fu, G. C. Angew. Chem. Int. Ed. 2019, 58, 3571.
[13] Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am. Chem. Soc. 2013, 135, 12004.
[14] Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.
[15] Hu, X. Chem. Sci. 2011, 2, 1867.
[16] (a) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R. Acc. Chem. Res. 2015, 48, 2344. (b) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.
[17] (a) Guan, B.-T.; X, S.-K.; Wang, B.-Q.; Sun, Z.-P.; Wang, Y.; Zhao, K.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 3268. (b) Yu, D.-G.; Wang, X.; Zhu, R.-L.; Luo, S.; Wang, B.-Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638.
[18] Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389.
[19] Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.
[20] Plunkett, S.; Basch, C. H.; Santana, S. O.; Watson, M. P. J. Am. Chem. Soc. 2019, 141, 2257.
[21] Zhan, B.-B.; Liu, B.; Hu, F.; Shi, B.-F. Sci. Chin. Chem. 2015, 60, 2097(in Chinese). (占贝贝, 刘斌, 胡芳, 史炳锋, 中国科学-化学, 2015, 60, 2097.)
[22] Wu, X.; Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2014, 136, 1789.
[23] (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[24] (a) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052. (b) Tells, J. C.; Kelly, C. B.; Primer, D.V.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429. (c) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem. Int. Ed. 2019, 58, 6152.
[25] Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.
[26] Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.
[27] Smith, R. T.; Zhang, X.; Rincón, J. A.; Agejas, J.; Mateos, C.; Barberis, M.; García-Cerrada, S.; Frutos, O. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 17433.
[28] For selected reviews of reductive cross-couplings:(a) Knappke, C. E. I.; Grupe, S.; Gärtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Chem. Eur. J. 2014, 20, 6828. (b) Gu, J.; Wang, X.; Xue, W.; Gong, H. Org. Chem. Front. 2015, 2, 1411. (c) Wang, X.; Dai, Y.; Gong, H. Top. Curr. Chem. 2016, 374, 43. (d) Lucas, E. L.; Jarvo, E. R. Nat. Rev. Chem. 2017, 1, No. 0065. (e) Poremba, K. E.; Dibrell, S. E.; Reisman, S. E. ACS Catal. 2020, 10, 8237.
[29] Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Org. Lett. 2011, 13, 2138.
[30] Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H. Chem. Sci. 2013, 4, 4022.
[31] Komeyama, K.; Michiyuki, T.; Osaka, I. ACS Catal. 2019, 9, 9285.
[32] (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. (c) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981. (d) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333. (e) Yan, T.; Guironnet, D. Sci. Chin. Chem. 2020, 63, 755.
[33] Wang, X.-X.; Lu, X.; Li. Y.; Wang, J.-W.; Fu, Y. Sci Chin. Chem.10.1007/s11426-020-9838-x.
[34] Lu, X.; Xiao, B.; Zhang, Z.-Q.; Gong, T.-J.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nat. Commun. 2016, 7, 11129.
[35] Zhou, F.; Zhu, J.; Zhang, Y.; Zhu, S. Angew. Chem. Int Ed. 2018, 57, 4058.
[36] Wang, Z.-Y.; Wan, J.-H.; Wang, G.-Y.; Wang, R.; Jin, R.-X.; Lan, Q.; Wang, X.-S. Tetrahedron Lett. 2018, 59, 2302.
[37] (a) Sun, S.-Z.; Borjesson, M.; Martin-Montero, R.; Martin, R. J. Am. Chem. Soc. 2018, 140,12765. (b) Qian, D.; Hu, X. Angew. Chem. Int. Ed. 2019, 58, 18519.
[38] Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161.
[39] Sun, S.-Z.; Romano, C.; Martin, R. J. Am. Chem. Soc. 2019, 141, 16197.
[40] Wang, Z.; Yin, H.; Fu, G. C. Nature 2018, 563, 379.
[41] Zhou, F.; Zhang, Y.; Xu, X.; Zhu, S. Angew. Chem. Int. Ed. 2019, 58, 1754.
[42] He, S.-J.; Wang, J.-W.; Li, Y.; Xu, Z.-Y.; Wang, X.-X.; Lu, X.; Fu, Y. J. Am. Chem. Soc. 2020, 142, 214.
[43] Yang, Z.-P.; Fu, G. C. J. Am. Chem. Soc. 2020, 142, 5870.
[44] Green, S. A.; Huffman, T. R.; McCourt, R. O.; van der Puyl, V.; Shenvi, R. A. J. Am. Chem. Soc. 2019, 141, 7709.
[45] Cheng, L.; Li, M.-M.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2018, 140, 11627.
[46] Chen, T.; Yang, H.; Yang, Y.; Dong, G.; Xing, D. ACS Catal. 2020, 10, 4238.
[47] (a) Cheng, L.; Li, M.-M.; Wang, B.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. Chem. Sci. 2019, 10, 10417. (b) Lv, L.; Zhu, D.; Qiu, Z.; Li, J.; Li, C.-J. ACS Catal. 2019, 9, 9199.
[48] Ji, D.-W.; He, G.-C.; Zhang, W.-S.; Zhao, C.-Y.; Hu, Y.-C.; Chen, Q.-A. Chem. Commun. 2020, 56, 7431.
[49] (a) Dhungana, R. K.; KC, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18, 1314. (b) Giri, R.; KC, S. J. Org. Chem. 2018, 83, 3013. (c) Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Chem. Sci. 2020, 11, 4287. (d) Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371. (e) Qi, X.; Diao, T. ACS Catal. 2020, 10, 8542.
[50] Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastage, M. D.; Baran, P. S. Science, 2016, 352, 801.
[51] KC, S.; Dhungana, R. K.; Shrestha, B.; Thapa, S.; Khanal, N.; Basnet, P.; Lebrun, R. W.; Giri, R. J. Am. Chem. Soc. 2018, 140, 9801.
[52] Chierchia, M.; Xu, P.; Lovinger, G. J.; Morken, J. P. Angew. Chem. Int. Ed. 2019, 58, 14245.
[53] García-Domínguez, A.; Li, Z.; Nevado, C. J. Am. Chem. Soc. 2017, 139, 6835.
[54] Shu, W.; García-Domínguez, A.; Quirós, M. T.; Mondal, R.; Cárdenas, D. J.; Nevado, C. J. Am. Chem. Soc. 2019, 141, 13812.
[55] (a) Guo, L.; Tu, H.-Y.; Zhu, S.; Chu, L. Org. Lett. 2019, 21, 4771. (b) García-Domínguez, A.; Mondal, R.; Nevado, C. Angew. Chem. Int. Ed. 2019, 58, 12286. (c) Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 20069.
[56] Derosa, J.; Tran, V. T.; Boulous, M. N.; Chen, J. S.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 10657.
[57] Derosa, J.; van der Puyl, V. A.; Tran, V. T.; Liu, M.; Engle, K. M. Chem. Sci. 2018, 9, 5278.
[58] (a) Nattmann, L.; Saeb, R.; Nöthling, N.; Cornella, J. Nat. Catal. 2020, 3, 6. (b) Tran, V. T.; Li, Z.-Q.; Apolinar, O.; Derosa, J.; Joannou,. W. V.; Wisniewski, S. R.; Eastgate, M. D.; Engle, K. M. Angew. Chem. Int. Ed. 2020, 59, 7409.
文章导航

/