综述

二维材料在光催化二氧化碳还原中的研究进展

  • 陈钱 ,
  • 匡勤 ,
  • 谢兆雄
展开
  • a 厦门大学化学化工学院 厦门 361001

陈钱, 分别于2016和2019年获得湖北大学学士学位和厦门大学硕士学位, 现为厦门大学博士生在读, 师从谢兆雄和匡勤, 主要研究兴趣为纳米光催化剂的设计合成、光催化分解水和光催化CO2还原.

匡勤, 分别于2001和2008年于厦门大学获得学士和博士学位, 于2008年入职厦门大学化学系, 2009年获“中国化学会青年化学奖”, 2011年入选“教育部新世纪人才支持计划”以及首届“香江学者计划”, 当前主要研究方向为: (1)无机纳米晶表/界面可控合成及性能(光电、气敏、催化等)研究; (2)半导体-MOFs复合纳米材料的制备及应用; (3)纳米传感器的构筑及应用.

谢兆雄, 现担任厦门大学化学化工学院院长职务, 先后获得霍英东基金会优秀青年教师基金、教育部新世纪人才、国家杰出青年科学基金、卢嘉锡基金会优秀导师奖、“万人计划”科技创新领军人才、长江学者特聘等. 主要研究方向为: 表面与界面结构化学, 功能纳米材料结构化学, 功能晶体材料结构化学和新型传感器等方面. 在JACS,Angew. Chem. Int. Ed.,Nat. Commun.,Accounts Chem. Res.等国际著名期刊发表论文200余篇, 他引次数达到18185次, H-index为66, 入选科睿唯安全球高被引科学家.

收稿日期: 2020-08-21

  网络出版日期: 2020-09-24

基金资助

国家重点研发计划(Nos. 2017YFA0206500); 国家重点研发计划(2017YFA0206801); 国家自然科学基金(Nos. 21671163); 国家自然科学基金(21773190); 国家自然科学基金(21721001); 国家自然科学基金(21931009)

Research Progress of Photocatalytic CO2 Reduction Based on Two-dimensional Materials

  • Qian Chen ,
  • Qin Kuang ,
  • Zhaoxiong Xie
Expand
  • a College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, China

Received date: 2020-08-21

  Online published: 2020-09-24

Supported by

the National Key Research and Development Program of China(Nos. 2017YFA0206500); the National Key Research and Development Program of China(2017YFA0206801); the National Natural Science Foundation of China(Nos. 21671163); the National Natural Science Foundation of China(21773190); the National Natural Science Foundation of China(21721001); the National Natural Science Foundation of China(21931009)

摘要

近几十年来, 由温室效应所导致的气候变暖、海平面上升等环境问题日趋严重, 科学家们一直致力于研究可高效转化二氧化碳(CO2)等温室气体的技术. 以太阳能为驱动力的光催化技术, 可将CO2转化成甲烷、甲醇、甲酸或C2+等高附加值的碳氢燃料, 同时缓解温室效应和能源危机. 二维(2D)材料因具有超大的比表面积和独特的电子结构, 在光催化还原CO2领域受到广泛的关注. 基于此, 作者综述了近年来2D材料实现CO2分子高效转化的研究进展, 重点剖析了2D材料在光还原反应中的构-效关系, 并探讨了黑磷、石墨炔和共价有机框架化合物等新型2D材料作为CO2光还原催化剂的发展潜力, 最后总体展望了CO2光还原领域的研究前景和发展趋势.

本文引用格式

陈钱 , 匡勤 , 谢兆雄 . 二维材料在光催化二氧化碳还原中的研究进展[J]. 化学学报, 2021 , 79(1) : 10 -22 . DOI: 10.6023/A20080384

Abstract

In past decades, global warming, sea level rising, and other climate problems caused by greenhouse effect are becoming more and more serious. Considerable efforts have been paid on developing new technology that can effectively reduce the atmospheric level of carbon dioxide (CO2), the most representative one of greenhouse gases. Solar-driven conversion of CO2 into high value-added hydrocarbon fuels is considered as the most promising approach to alleviate the current energy crisis and the rising CO2 level. Benefiting from their high specific surface area and novel electronic structures, two dimensional (2D) materials have drawn intense interest in the field of CO2 photoreduction. Herein, the latest development of 2D materials for photocatalytic CO2 reduction is presented, with special emphasis given to the structure-activity relationship in catalytic reactions. The potentials of newly emerged 2D materials including black phosphorus, graphdiyne and covalent organic frameworks as the next generation photocatalysts for CO2 reduction are then discussed. Finally, the opportunities and challenges in the field of CO2 photoreduction are featured on the basis of its current development.

参考文献

[1]
Goeppert, A.; Czaun, M.; Jones, J.P.; Surya Prakash, G.K.; Olah, G.A. Chem. Soc. Rev. 2014, 43, 7995.
[2]
Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Angew. Chem. Int. Ed. 2013, 52, 7372.
[3]
Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709.
[4]
Sgouridis, S.; Carbajales-Dale, M.; Csala, D.; Chiesa, M.; Bardi, U.J.N. E.Nat. Energy 2019, 4, 456.
[5]
Kattel, S.; Liu, P.; Chen, J.G. J. Am. Chem. Soc. 2017, 139, 9739.
[6]
Wang, C.; Guan, E.; Wang, L.; Chu, X.; Wu, Z.; Zhang, J.; Yang, Z.; Jiang, Y.; Zhang, L.; Meng, X.; Gates, B.C.; Xiao, F.S. J. Am. Chem. Soc. 2019, 141, 8482.
[7]
Kattel, S.; Ramírez, P.J.; Chen, J.G.; Rodriguez, J.A.; Liu, P. Science 2017, 355, 1296.
[8]
Chang, X.; Wang, T.; Gong, J. Energ. Environ. Sci. 2016, 9, 2177.
[9]
Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962.
[10]
Chen, Q.; Chen, X.; Fang, M.; Chen, J.Y.; Li, Y.; Xie, Z.; Kuang, Q.; Zheng, L. J. Mater. Chem. A 2019, 7, 1334.
[11]
Luc, W.; Ko, B.H.; Kattel, S.; Li, S.; Su, D.; Chen, J.G.; Jiao, F. J. Am. Chem. Soc. 2019, 141, 9902.
[12]
Zhang, J.; Yin, R.; Shao, Q.; Zhu, T.; Huang, X. Angew. Chem. Int. Ed. 2019, 58, 5609.
[13]
Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H.M.; Hu, X.J.S. Science 2019, 364, 1091.
[14]
Xu, S.; Carter, E.A. Chem. Rev. 2019, 119, 6631.
[15]
Chang, X.; Wang, T.; Zhang, P.; Wei, Y.; Zhao, J.; Gong, J. Angew. Chem. Int. Ed. 2016, 55, 8840.
[16]
Chu, S.; Ou, P.; Ghamari, P.; Vanka, S.; Zhou, B.; Shih, I.; Song, J.; Mi, Z. J. Am. Chem. Soc. 2018, 140, 7869.
[17]
Zhang, Z.; Gong, L.; Zhou, X.Y.; Yan, S.S.; Li, J.; Yu, D.G. Acta Chim. Sinica 2019, 77, 783 . (in Chinese)
[17]
张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.
[18]
Song, B.; Qin, A.J.; Tang, B.Z. Acta Chim. Sinica 2020, 78, 9 . (in Chinese)
[18]
宋波, 秦安军, 唐本忠, 化学学报, 2020, 78, 9.
[19]
Zhang, S.; Li, X.D.; He, L.N. Acta Chim. Sinica 2016, 74, 17 . (in Chinese)
[19]
张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17.
[20]
Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Angew. Chem. Int. Ed. 2018, 57, 7610.
[21]
Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.H.; Sindoro, M.; Zhang, H. Chem. Rev. 2017, 117, 6225.
[22]
Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K.J.N. Nature 1979, 277, 637.
[23]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.J. s.Science 2004, 306, 666.
[24]
Meier, A.J.; Garg, A.; Sutter, B.; Kuhn, J.N.; Bhethanabotla, V.R. ACS Sustain. Chem. Eng. 2018, 7, 265.
[25]
Jiao, X.; Li, X.; Jin, X.; Sun, Y.; Xu, J.; Liang, L.; Ju, H.; Zhu, J.; Pan, Y.; Yan, W.; Lin, Y.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 18044.
[26]
Huang, C.; Chen, C.; Zhang, M.; Lin, L.; Ye, X.; Lin, S.; Antonietti, M.; Wang, X. Nat. Commun. 2015, 6, 7698.
[27]
Cao, Y.; Zhang, R.; Zhou, T.; Jin, S.; Huang, J.; Ye, L.; Huang, Z.; Wang, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 9935.
[28]
Yang, P.; Zhuzhang, H.; Wang, R.; Lin, W.; Wang, X. Angew. Chem. Int. Ed. 2019, 58, 1134.
[29]
Tang, S.; Yin, X.; Wang, G.; Lu, X.; Lu, T. Nano Res. 2018, 12, 457.
[30]
Li, A.; Cao, Q.; Zhou, G.; Schmidt, B.; Zhu, W.; Yuan, X.; Huo, H.; Gong, J.; Antonietti, M. Angew. Chem. Int. Ed. 2019, 58, 14549.
[31]
Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. J. Catal. 2018, 361, 255.
[32]
Pan, A.; Ma, X.; Huang, S.; Wu, Y.; Jia, M.; Shi, Y.; Liu, Y.; Wangyang, P.; He, L.; Liu, Y. J. Phys. Chem. Lett. 2019, 10, 6590.
[33]
Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G.I.; Wu, L.Z.; Tung, C.H.; Smith, L.J.; O'Hare, D.; Zhang, T. Adv. Mater. 2015, 27, 7824.
[34]
Bai, S.; Wang, Z.; Tan, L.; Waterhouse, G.I.N.; Zhao, Y.; Song, Y.-F. Ind. Eng. Chem. Res. 2020, 59, 5848.
[35]
Deng, D.; Novoselov, K.S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Nat. Nanotech. 2016, 11, 218.
[36]
Zhang, X.; Cheng, H.; Zhang, H. Adv. Mater. 2017, 29, 1701704.
[37]
Tan, C.; Zhang, H. Nat. Commun. 2015, 6, 7873.
[38]
Dong, R.; Zhang, T.; Feng, X. Chem. Rev. 2018, 118, 6189.
[39]
Coleman, J.N.; Lotya, M.; O'Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; Shvets, I.V.; Arora, S.K.; Stanton, G.; Kim, H.Y.; Lee, K.; Kim, G.T.; Duesberg, G.S.; Hallam, T.; Boland, J.J.; Wang, J.J.; Donegan, J.F.; Grunlan, J.C.; Moriarty, G.; Shmeliov, A.; Nicholls, R.J.; Perkins, J.M.; Grieveson, E.M.; Theuwissen, K.; McComb, D.W.; Nellist, P.D.; Nicolosi, V. Science 2011, 331, 568.
[40]
Zhang, J.; Chen, Y.; Wang, X. Energ. Environ. Sci. 2015, 8, 3092.
[41]
Jiang, W.; Wang, H.; Zhang, X.; Zhu, Y.; Xie, Y. Sci. China Chem. 2018, 61, 1205.
[42]
Cai, Z.; Liu, B.; Zou, X.; Cheng, H.M. Chem. Rev. 2018, 118, 6091.
[43]
Wu, T.; Zhang, X.; Yuan, Q.; Xue, J.; Lu, G.; Liu, Z.; Wang, H.; Wang, H.; Ding, F.; Yu, Q.; Xie, X.; Jiang, M. Nat. Mater. 2016, 15, 43.
[44]
Li, H.; Xiao, J.; Fu, Q.; Bao, X. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5930.
[45]
Xue, Y.; Zhang, Q.; Wang, W.; Cao, H.; Yang, Q.; Fu, L. Adv. Energy Mater. 2017, 7, 1602684.
[46]
Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2004, 126, 5851.
[47]
Zhao, Y.; Waterhouse, G.I.N.; Chen, G.; Xiong, X.; Wu, L.Z.; Tung, C.H.; Zhang, T. Chem. Soc. Rev. 2019, 48, 1972.
[48]
Bi, W.; Wu, C.; Xie, Y. ACS Energy Lett. 2018, 3, 624.
[49]
Ji, Y.; Luo, Y. J. Am. Chem. Soc. 2016, 138, 15896.
[50]
Zhu, Y.; Gao, C.; Bai, S.; Chen, S.; Long, R.; Song, L.; Li, Z.; Xiong, Y. Nano Res. 2017, 10, 3396.
[51]
Qamar, S.; Lei, F.; Liang, L.; Gao, S.; Liu, K.; Sun, Y.; Ni, W.; Xie, Y. Nano Energy 2016, 26, 692.
[52]
Xu, H.; Ouyang, S.; Li, P.; Kako, T.; Ye, J. ACS Appl. Mater. Interfaces 2013, 5, 1348.
[53]
Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z. ACS Appl. Mater. Interfaces 2012, 4, 3372.
[54]
Chen, W.; Han, B.; Tian, C.; Liu, X.; Liang, S.; Deng, H.; Lin, Z. Appl. Catal. B-Environ. 2019, 244, 996.
[55]
Han, Q.; Bai, X.; Man, Z.; He, H.; Li, L.; Hu, J.; Alsaedi, A.; Hayat, T.; Yu, Z.; Zhang, W.; Wang, J.; Zhou, Y.; Zou, Z. J. Am. Chem. Soc. 2019, 141, 4209.
[56]
Liu, K.; Li, X.; Liang, L.; Wu, J.; Jiao, X.; Xu, J.; Sun, Y.; Xie, Y. Nano Res. 2018, 11, 2897.
[57]
Zhu, S.; Liang, S.; Bi, J.; Liu, M.; Zhou, L.; Wu, L.; Wang, X. Green Chem. 2016, 18, 1355.
[58]
Liu, Q.; Wu, D.; Zhou, Y.; Su, H.; Wang, R.; Zhang, C.; Yan, S.; Xiao, M.; Zou, Z. ACS Appl. Mater. Interfaces 2014, 6, 2356.
[59]
Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 7586.
[60]
Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Nat. Energy 2019, 4, 690.
[61]
Li, X.; Liang, L.; Sun, Y.; Xu, J.; Jiao, X.; Xu, X.; Ju, H.; Pan, Y.; Zhu, J.; Xie, Y. J. Am. Chem. Soc. 2019, 141, 423.
[62]
Yu, H.; Huang, H.; Xu, K.; Hao, W.; Guo, Y.; Wang, S.; Shen, X.; Pan, S.; Zhang, Y. ACS Sustain. Chem. Eng. 2017, 5, 10499.
[63]
Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; Wang, C.; Xie, Y. Angew. Chem. Int. Ed. 2018, 57, 8719.
[64]
Ye, L.; Wang, H.; Jin, X.; Su, Y.; Wang, D.; Xie, H.; Liu, X.; Liu, X. Sol. Energ. Mater. Sol. C 2016, 144, 732.
[65]
Mu, Q.; Zhu, W.; Li, X.; Zhang, C.; Su, Y.; Lian, Y.; Qi, P.; Deng, Z.; Zhang, D.; Wang, S.; Zhu, X.; Peng, Y. Appl. Catal. B-Environ. 2020, 262, 118144.
[66]
Zheng, C.; Qiu, X.; Han, J.; Wu, Y.; Liu, S. ACS Appl. Mater. Interfaces 2019, 11, 42243.
[67]
Tu, W.; Zhou, Y.; Liu, Q.; Yan, S.; Bao, S.; Wang, X.; Xiao, M.; Zou, Z. Adv. Funct. Mater. 2013, 23, 1743.
[68]
Xu, Y.F.; Yang, M.Z.; Chen, B.X.; Wang, X.D.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. J. Am. Chem. Soc. 2017, 139, 5660.
[69]
Shown, I.; Hsu, H.C.; Chang, Y.C.; Lin, C.H.; Roy, P.K.; Ganguly, A.; Wang, C.H.; Chang, J.K.; Wu, C.I.; Chen, L.C.; Chen, K.H. Nano Lett. 2014, 14, 6097.
[70]
Olowoyo, J.O.; Kumar, M.; Singh, B.; Oninla, V.O.; Babalola, J.O.; Valdés, H.; Vorontsov, A.V.; Kumar, U. Carbon 2019, 147, 385.
[71]
Li, X.; Bi, W.; Wang, Z.; Zhu, W.; Chu, W.; Wu, C.; Xie, Y. Nano Res. 2018, 11, 3362.
[72]
Tan, D.; Zhang, J.; Shi, J.; Li, S.; Zhang, B.; Tan, X.; Zhang, F.; Liu, L.; Shao, D.; Han, B. ACS Appl. Mater. Interfaces 2018, 10, 24516.
[73]
Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2009, 131, 3152.
[74]
Du, P.; Su, T.; Luo, X.; Zhou, X.; Qin, Z.; Ji, H.; Chen, J. Chin. J. Chem. 2018, 36, 538.
[75]
Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Adv. Mater. 2015, 27, 5309.
[76]
Chandrasekaran, S.; Yao, L.; Deng, L.; Bowen, C.; Zhang, Y.; Chen, S.; Lin, Z.; Peng, F.; Zhang, P. Chem. Soc. Rev. 2019, 48, 4178.
[77]
Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. Adv. Mater. 2016, 28, 1917.
[78]
Chen, Z.Y.; Liu, J.W.; Cui, H.; Zhang, L.; Su, C.Y. Acta Chim. Sinica 2019, 77, 242 . (in Chinese)
[78]
陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.
[79]
Xiong, J.; Song, P.; Di, J.; Li, H.; Liu, Z. J. Mater. Chem. A 2019, 7, 25203.
[80]
Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Adv. Mater. 2019, 31, e1900617.
[81]
Li, R.; Zhang, W.; Zhou, K. Adv. Mater. 2018, 30, e1705512.
[82]
Xiao, J.D.; Jiang, H.L. Acc. Chem. Res. 2019, 52, 356.
[83]
Liu, X.; Li, J.; Li, N.; Li, B.; Bu, X.H. Chin. J. Chem. 2020, 38, 10.
[84]
Zhao, Y.; Jia, X.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2016, 6, 1501974.
[85]
Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Chem. Soc. Rev. 2019, 48, 72.
[86]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Adv. Mater. 2011, 23, 4248.
[87]
Xiang, Q.; Cheng, B.; Yu, J. Angew. Chem. Int. Ed. 2015, 54, 11350.
[88]
Low, J.; Yu, J.; Ho, W. J. Phys. Chem. Lett. 2015, 6, 4244.
[89]
Shen, M.; Zhang, L.; Shi, J. Nanotechnology 2018, 29, 412001.
[90]
Li, J.; Chen, G.; Zhu, Y.; Liang, Z.; Pei, A.; Wu, C.-L.; Wang, H.; Lee, H.R.; Liu, K.; Chu, S.; Cui, Y. Nat. Catal. 2018, 1, 592.
[91]
Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S.Z. Adv. Mater. 2018, 30, e1800128.
[92]
Yuan, Z.; Liu, D.; Tian, N.; Zhang, G.; Zhang, Y. Acta Chim. Sinica 2016, 74, 488 . (in Chinese)
[92]
袁振洲, 刘丹敏, 田楠, 张国庆, 张永哲, 化学学报, 2016, 74, 488.
[93]
Zhu, X.; Zhang, T.; Sun, Z.; Chen, H.; Guan, J.; Chen, X.; Ji, H.; Du, P.; Yang, S. Adv. Mater. 2017, 29, 1605776.
[94]
Li, J.; Gao, X.; Zhu, L.; Ghazzal, M.N.; Zhang, J.; Tung, C.-H.; Wu, L.-Z. Energ. Environ. Sci. 2020, 13, 1326.
[95]
Zuo, Z.; Li, Y. Joule 2019, 3, 899.
[96]
Xu, F.; Meng, K.; Zhu, B.; Liu, H.; Xu, J.; Yu, J. Adv. Funct. Mater. 2019, 29, 1904256.
[97]
Cao, S.; Wang, Y.; Zhu, B.; Xie, G.; Yu, J.; Gong, J.R. J. Mater. Chem. A 2020, 8, 7671.
[98]
Zhou, J.; Li, J.; Liu, Z.; Zhang, J. Adv. Mater. 2019, 31, e1803758.
[99]
Waller, P.J.; Gandara, F.; Yaghi, O.M. Acc. Chem. Res. 2015, 48, 3053.
[100]
Huang, W.; Li, Y. Chin. J. Chem. 2019, 37, 1291.
[101]
Zeng, Y.; Zou, R.; Zhao, Y. Adv. Mater. 2016, 28, 2855.
[102]
Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 1.
[103]
Lohse, M.S.; Stassin, T.; Naudin, G.; Wuttke, S.; Ameloot, R.; De Vos, D.; Medina, D.D.; Bein, T. Chem. Mater. 2016, 28, 626.
[104]
Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M.A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277.
[105]
Wang, X.; Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2016, 138, 12332.
[106]
Lin, C.Y.; Zhang, D.; Zhao, Z.; Xia, Z. Adv. Mater. 2018, 30, 1703646.
[107]
Peng, P.; Zhou, Z.; Guo, J.; Xiang, Z. ACS Energy Lett. 2017, 2, 1308.
[108]
Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W. Appl. Catal. B-Environ. 2018, 239, 46.
[109]
Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J. J. Am. Chem. Soc. 2019, 141, 17431.
[110]
Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. ACS Sustain. Chem. Eng. 2020, 8, 8214.
[111]
Wang, H.; Zhang, L.; Zhou, Y.; Qiao, S.; Liu, X.; Wang, W. Appl. Catal. B-Environ. 2020, 263, 118331.
[112]
Cai, X.; Wang, A.; Wang, J.; Wang, R.; Zhong, S.; Zhao, Y.; Wu, L.; Chen, J.; Bai, S. J. Mater. Chem. A 2018, 6, 17444.
[113]
Xu, H.; Ouyang, S.; Li, P.; Kako, T.; Ye, J. ACS Appl. Mater. Interfaces 2013, 5, 1348.
[114]
Liang, L.; Li, X.; Sun, Y.; Tan, Y.; Jiao, X.; Ju, H.; Qi, Z.; Zhu, J.; Xie, Y. Joule 2018, 2, 1004.
[115]
Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B.I.; Terrones, H.; Terrones, M.; Tay, B.K.; Lou, J.; Pantelides, S.T.; Liu, Z.; Zhou, W.; Ajayan, P.M. Nat. Mater. 2014, 13, 1135.
[116]
Hou, H.; Zeng, X.; Zhang, X. Sci. China Mater. 2020, 63, 2119.
[117]
Xiong, J.; Song, P.; Di, J.; Li, H. Appl. Catal. B-Environ. 2019, 256, 117788.
[118]
Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater. 2018, 28, 1800136.
[119]
Chen, K.; Wan, X.; Xie, W.; Wen, J.; Kang, Z.; Zeng, X.; Chen, H.; Xu, J. Adv. Mater. 2015, 27, 6431.
[120]
Fei, F.; Wei, Z.; Wang, Q.; Lu, P.; Wang, S.; Qin, Y.; Pan, D.; Zhao, B.; Wang, X.; Sun, J.; Wang, X.; Wang, P.; Wan, J.; Zhou, J.; Han, M.; Song, F.; Wang, B.; Wang, G. Nano Lett. 2015, 15, 5905.
[121]
Ha, M.N.; Lu, G.; Liu, Z.; Wang, L.; Zhao, Z. J. Mater. Chem. A 2016, 4, 13155.
[122]
Li, Y.; Wang, C.; Song, M.; Li, D.; Zhang, X.; Liu, Y. Appl. Catal. B-Environ. 2019, 243, 760.
[123]
Chen, X.; Li, Q.; Li, J.; Chen, J.; Jia, H. Appl. Catal. B-Environ. 2020, 270, 118915.
[124]
Wang, S.; Wu, T.; Lin, J.; Ji, Y.; Yan, S.; Pei, Y.; Xie, S.; Zong, B.; Qiao, M. ACS Catal. 2020, 10, 6389.
[125]
Ma, Z.; Porosoff, M.D. ACS Catal. 2019, 9, 2639.
[126]
Kim, K.Y.; Lee, H.; Noh, W.Y.; Shin, J.; Han, S.J.; Kim, S.K.; An, K.; Lee, J.S. ACS Catal. 2020, 10, 8660.
[127]
Numpilai, T.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Energy Convers. Manage. 2019, 180, 511.
[128]
Dong, Y.; Nie, R.; Wang, J.; Yu, X.; Tu, P.; Chen, J.; Jing, H. Chinese J. Catal. 2019, 40, 1222.
[129]
Liu, J.-Y.; Gong, X.-Q.; Li, R.; Shi, H.; Cronin, S.B.; Alexandrova, A.N. ACS Catal. 2020, 10, 4048.
[130]
Li, Z.; Cheng, H.; Li, Y.; Zhang, W.; Yu, Y. ACS Sustain. Chem. Eng. 2019, 7, 4325.
[131]
Yang, D.; Yu, H.; He, T.; Zuo, S.; Liu, X.; Yang, H.; Ni, B.; Li, H.; Gu, L.; Wang, D.; Wang, X. Nat. Commun. 2019, 10, 3844.
[132]
Qiu, J.; Wei, W.D. J. Phys. Chem.C 2014, 118, 20735.
[133]
Yang, H.; He, L.Q.; Hu, Y.W.; Lu, X.; Li, G.R.; Liu, B.; Ren, B.; Tong, Y.; Fang, P.P. Angew. Chem. Int. Ed. 2015, 54, 11462.
[134]
Liu, X.; Ye, M.; Zhang, S.; Huang, G.; Li, C.; Yu, J.; Wong, P.K.; Liu, S. J. Mater. Chem. A 2018, 6, 24245.
文章导航

/