二维材料在光催化二氧化碳还原中的研究进展
收稿日期: 2020-08-21
网络出版日期: 2020-09-24
基金资助
国家重点研发计划(Nos. 2017YFA0206500); 国家重点研发计划(2017YFA0206801); 国家自然科学基金(Nos. 21671163); 国家自然科学基金(21773190); 国家自然科学基金(21721001); 国家自然科学基金(21931009)
Research Progress of Photocatalytic CO2 Reduction Based on Two-dimensional Materials
Received date: 2020-08-21
Online published: 2020-09-24
Supported by
the National Key Research and Development Program of China(Nos. 2017YFA0206500); the National Key Research and Development Program of China(2017YFA0206801); the National Natural Science Foundation of China(Nos. 21671163); the National Natural Science Foundation of China(21773190); the National Natural Science Foundation of China(21721001); the National Natural Science Foundation of China(21931009)
近几十年来, 由温室效应所导致的气候变暖、海平面上升等环境问题日趋严重, 科学家们一直致力于研究可高效转化二氧化碳(CO2)等温室气体的技术. 以太阳能为驱动力的光催化技术, 可将CO2转化成甲烷、甲醇、甲酸或C2+等高附加值的碳氢燃料, 同时缓解温室效应和能源危机. 二维(2D)材料因具有超大的比表面积和独特的电子结构, 在光催化还原CO2领域受到广泛的关注. 基于此, 作者综述了近年来2D材料实现CO2分子高效转化的研究进展, 重点剖析了2D材料在光还原反应中的构-效关系, 并探讨了黑磷、石墨炔和共价有机框架化合物等新型2D材料作为CO2光还原催化剂的发展潜力, 最后总体展望了CO2光还原领域的研究前景和发展趋势.
陈钱 , 匡勤 , 谢兆雄 . 二维材料在光催化二氧化碳还原中的研究进展[J]. 化学学报, 2021 , 79(1) : 10 -22 . DOI: 10.6023/A20080384
In past decades, global warming, sea level rising, and other climate problems caused by greenhouse effect are becoming more and more serious. Considerable efforts have been paid on developing new technology that can effectively reduce the atmospheric level of carbon dioxide (CO2), the most representative one of greenhouse gases. Solar-driven conversion of CO2 into high value-added hydrocarbon fuels is considered as the most promising approach to alleviate the current energy crisis and the rising CO2 level. Benefiting from their high specific surface area and novel electronic structures, two dimensional (2D) materials have drawn intense interest in the field of CO2 photoreduction. Herein, the latest development of 2D materials for photocatalytic CO2 reduction is presented, with special emphasis given to the structure-activity relationship in catalytic reactions. The potentials of newly emerged 2D materials including black phosphorus, graphdiyne and covalent organic frameworks as the next generation photocatalysts for CO2 reduction are then discussed. Finally, the opportunities and challenges in the field of CO2 photoreduction are featured on the basis of its current development.
[1] | Goeppert, A.; Czaun, M.; Jones, J.P.; Surya Prakash, G.K.; Olah, G.A. Chem. Soc. Rev. 2014, 43, 7995. |
[2] | Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Angew. Chem. Int. Ed. 2013, 52, 7372. |
[3] | Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. |
[4] | Sgouridis, S.; Carbajales-Dale, M.; Csala, D.; Chiesa, M.; Bardi, U.J.N. E.Nat. Energy 2019, 4, 456. |
[5] | Kattel, S.; Liu, P.; Chen, J.G. J. Am. Chem. Soc. 2017, 139, 9739. |
[6] | Wang, C.; Guan, E.; Wang, L.; Chu, X.; Wu, Z.; Zhang, J.; Yang, Z.; Jiang, Y.; Zhang, L.; Meng, X.; Gates, B.C.; Xiao, F.S. J. Am. Chem. Soc. 2019, 141, 8482. |
[7] | Kattel, S.; Ramírez, P.J.; Chen, J.G.; Rodriguez, J.A.; Liu, P. Science 2017, 355, 1296. |
[8] | Chang, X.; Wang, T.; Gong, J. Energ. Environ. Sci. 2016, 9, 2177. |
[9] | Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962. |
[10] | Chen, Q.; Chen, X.; Fang, M.; Chen, J.Y.; Li, Y.; Xie, Z.; Kuang, Q.; Zheng, L. J. Mater. Chem. A 2019, 7, 1334. |
[11] | Luc, W.; Ko, B.H.; Kattel, S.; Li, S.; Su, D.; Chen, J.G.; Jiao, F. J. Am. Chem. Soc. 2019, 141, 9902. |
[12] | Zhang, J.; Yin, R.; Shao, Q.; Zhu, T.; Huang, X. Angew. Chem. Int. Ed. 2019, 58, 5609. |
[13] | Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H.M.; Hu, X.J.S. Science 2019, 364, 1091. |
[14] | Xu, S.; Carter, E.A. Chem. Rev. 2019, 119, 6631. |
[15] | Chang, X.; Wang, T.; Zhang, P.; Wei, Y.; Zhao, J.; Gong, J. Angew. Chem. Int. Ed. 2016, 55, 8840. |
[16] | Chu, S.; Ou, P.; Ghamari, P.; Vanka, S.; Zhou, B.; Shih, I.; Song, J.; Mi, Z. J. Am. Chem. Soc. 2018, 140, 7869. |
[17] | Zhang, Z.; Gong, L.; Zhou, X.Y.; Yan, S.S.; Li, J.; Yu, D.G. Acta Chim. Sinica 2019, 77, 783 . (in Chinese) |
[17] | 张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783. |
[18] | Song, B.; Qin, A.J.; Tang, B.Z. Acta Chim. Sinica 2020, 78, 9 . (in Chinese) |
[18] | 宋波, 秦安军, 唐本忠, 化学学报, 2020, 78, 9. |
[19] | Zhang, S.; Li, X.D.; He, L.N. Acta Chim. Sinica 2016, 74, 17 . (in Chinese) |
[19] | 张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17. |
[20] | Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Angew. Chem. Int. Ed. 2018, 57, 7610. |
[21] | Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.H.; Sindoro, M.; Zhang, H. Chem. Rev. 2017, 117, 6225. |
[22] | Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K.J.N. Nature 1979, 277, 637. |
[23] | Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.J. s.Science 2004, 306, 666. |
[24] | Meier, A.J.; Garg, A.; Sutter, B.; Kuhn, J.N.; Bhethanabotla, V.R. ACS Sustain. Chem. Eng. 2018, 7, 265. |
[25] | Jiao, X.; Li, X.; Jin, X.; Sun, Y.; Xu, J.; Liang, L.; Ju, H.; Zhu, J.; Pan, Y.; Yan, W.; Lin, Y.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 18044. |
[26] | Huang, C.; Chen, C.; Zhang, M.; Lin, L.; Ye, X.; Lin, S.; Antonietti, M.; Wang, X. Nat. Commun. 2015, 6, 7698. |
[27] | Cao, Y.; Zhang, R.; Zhou, T.; Jin, S.; Huang, J.; Ye, L.; Huang, Z.; Wang, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 9935. |
[28] | Yang, P.; Zhuzhang, H.; Wang, R.; Lin, W.; Wang, X. Angew. Chem. Int. Ed. 2019, 58, 1134. |
[29] | Tang, S.; Yin, X.; Wang, G.; Lu, X.; Lu, T. Nano Res. 2018, 12, 457. |
[30] | Li, A.; Cao, Q.; Zhou, G.; Schmidt, B.; Zhu, W.; Yuan, X.; Huo, H.; Gong, J.; Antonietti, M. Angew. Chem. Int. Ed. 2019, 58, 14549. |
[31] | Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. J. Catal. 2018, 361, 255. |
[32] | Pan, A.; Ma, X.; Huang, S.; Wu, Y.; Jia, M.; Shi, Y.; Liu, Y.; Wangyang, P.; He, L.; Liu, Y. J. Phys. Chem. Lett. 2019, 10, 6590. |
[33] | Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G.I.; Wu, L.Z.; Tung, C.H.; Smith, L.J.; O'Hare, D.; Zhang, T. Adv. Mater. 2015, 27, 7824. |
[34] | Bai, S.; Wang, Z.; Tan, L.; Waterhouse, G.I.N.; Zhao, Y.; Song, Y.-F. Ind. Eng. Chem. Res. 2020, 59, 5848. |
[35] | Deng, D.; Novoselov, K.S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Nat. Nanotech. 2016, 11, 218. |
[36] | Zhang, X.; Cheng, H.; Zhang, H. Adv. Mater. 2017, 29, 1701704. |
[37] | Tan, C.; Zhang, H. Nat. Commun. 2015, 6, 7873. |
[38] | Dong, R.; Zhang, T.; Feng, X. Chem. Rev. 2018, 118, 6189. |
[39] | Coleman, J.N.; Lotya, M.; O'Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; Shvets, I.V.; Arora, S.K.; Stanton, G.; Kim, H.Y.; Lee, K.; Kim, G.T.; Duesberg, G.S.; Hallam, T.; Boland, J.J.; Wang, J.J.; Donegan, J.F.; Grunlan, J.C.; Moriarty, G.; Shmeliov, A.; Nicholls, R.J.; Perkins, J.M.; Grieveson, E.M.; Theuwissen, K.; McComb, D.W.; Nellist, P.D.; Nicolosi, V. Science 2011, 331, 568. |
[40] | Zhang, J.; Chen, Y.; Wang, X. Energ. Environ. Sci. 2015, 8, 3092. |
[41] | Jiang, W.; Wang, H.; Zhang, X.; Zhu, Y.; Xie, Y. Sci. China Chem. 2018, 61, 1205. |
[42] | Cai, Z.; Liu, B.; Zou, X.; Cheng, H.M. Chem. Rev. 2018, 118, 6091. |
[43] | Wu, T.; Zhang, X.; Yuan, Q.; Xue, J.; Lu, G.; Liu, Z.; Wang, H.; Wang, H.; Ding, F.; Yu, Q.; Xie, X.; Jiang, M. Nat. Mater. 2016, 15, 43. |
[44] | Li, H.; Xiao, J.; Fu, Q.; Bao, X. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5930. |
[45] | Xue, Y.; Zhang, Q.; Wang, W.; Cao, H.; Yang, Q.; Fu, L. Adv. Energy Mater. 2017, 7, 1602684. |
[46] | Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2004, 126, 5851. |
[47] | Zhao, Y.; Waterhouse, G.I.N.; Chen, G.; Xiong, X.; Wu, L.Z.; Tung, C.H.; Zhang, T. Chem. Soc. Rev. 2019, 48, 1972. |
[48] | Bi, W.; Wu, C.; Xie, Y. ACS Energy Lett. 2018, 3, 624. |
[49] | Ji, Y.; Luo, Y. J. Am. Chem. Soc. 2016, 138, 15896. |
[50] | Zhu, Y.; Gao, C.; Bai, S.; Chen, S.; Long, R.; Song, L.; Li, Z.; Xiong, Y. Nano Res. 2017, 10, 3396. |
[51] | Qamar, S.; Lei, F.; Liang, L.; Gao, S.; Liu, K.; Sun, Y.; Ni, W.; Xie, Y. Nano Energy 2016, 26, 692. |
[52] | Xu, H.; Ouyang, S.; Li, P.; Kako, T.; Ye, J. ACS Appl. Mater. Interfaces 2013, 5, 1348. |
[53] | Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z. ACS Appl. Mater. Interfaces 2012, 4, 3372. |
[54] | Chen, W.; Han, B.; Tian, C.; Liu, X.; Liang, S.; Deng, H.; Lin, Z. Appl. Catal. B-Environ. 2019, 244, 996. |
[55] | Han, Q.; Bai, X.; Man, Z.; He, H.; Li, L.; Hu, J.; Alsaedi, A.; Hayat, T.; Yu, Z.; Zhang, W.; Wang, J.; Zhou, Y.; Zou, Z. J. Am. Chem. Soc. 2019, 141, 4209. |
[56] | Liu, K.; Li, X.; Liang, L.; Wu, J.; Jiao, X.; Xu, J.; Sun, Y.; Xie, Y. Nano Res. 2018, 11, 2897. |
[57] | Zhu, S.; Liang, S.; Bi, J.; Liu, M.; Zhou, L.; Wu, L.; Wang, X. Green Chem. 2016, 18, 1355. |
[58] | Liu, Q.; Wu, D.; Zhou, Y.; Su, H.; Wang, R.; Zhang, C.; Yan, S.; Xiao, M.; Zou, Z. ACS Appl. Mater. Interfaces 2014, 6, 2356. |
[59] | Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 7586. |
[60] | Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Nat. Energy 2019, 4, 690. |
[61] | Li, X.; Liang, L.; Sun, Y.; Xu, J.; Jiao, X.; Xu, X.; Ju, H.; Pan, Y.; Zhu, J.; Xie, Y. J. Am. Chem. Soc. 2019, 141, 423. |
[62] | Yu, H.; Huang, H.; Xu, K.; Hao, W.; Guo, Y.; Wang, S.; Shen, X.; Pan, S.; Zhang, Y. ACS Sustain. Chem. Eng. 2017, 5, 10499. |
[63] | Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; Wang, C.; Xie, Y. Angew. Chem. Int. Ed. 2018, 57, 8719. |
[64] | Ye, L.; Wang, H.; Jin, X.; Su, Y.; Wang, D.; Xie, H.; Liu, X.; Liu, X. Sol. Energ. Mater. Sol. C 2016, 144, 732. |
[65] | Mu, Q.; Zhu, W.; Li, X.; Zhang, C.; Su, Y.; Lian, Y.; Qi, P.; Deng, Z.; Zhang, D.; Wang, S.; Zhu, X.; Peng, Y. Appl. Catal. B-Environ. 2020, 262, 118144. |
[66] | Zheng, C.; Qiu, X.; Han, J.; Wu, Y.; Liu, S. ACS Appl. Mater. Interfaces 2019, 11, 42243. |
[67] | Tu, W.; Zhou, Y.; Liu, Q.; Yan, S.; Bao, S.; Wang, X.; Xiao, M.; Zou, Z. Adv. Funct. Mater. 2013, 23, 1743. |
[68] | Xu, Y.F.; Yang, M.Z.; Chen, B.X.; Wang, X.D.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. J. Am. Chem. Soc. 2017, 139, 5660. |
[69] | Shown, I.; Hsu, H.C.; Chang, Y.C.; Lin, C.H.; Roy, P.K.; Ganguly, A.; Wang, C.H.; Chang, J.K.; Wu, C.I.; Chen, L.C.; Chen, K.H. Nano Lett. 2014, 14, 6097. |
[70] | Olowoyo, J.O.; Kumar, M.; Singh, B.; Oninla, V.O.; Babalola, J.O.; Valdés, H.; Vorontsov, A.V.; Kumar, U. Carbon 2019, 147, 385. |
[71] | Li, X.; Bi, W.; Wang, Z.; Zhu, W.; Chu, W.; Wu, C.; Xie, Y. Nano Res. 2018, 11, 3362. |
[72] | Tan, D.; Zhang, J.; Shi, J.; Li, S.; Zhang, B.; Tan, X.; Zhang, F.; Liu, L.; Shao, D.; Han, B. ACS Appl. Mater. Interfaces 2018, 10, 24516. |
[73] | Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2009, 131, 3152. |
[74] | Du, P.; Su, T.; Luo, X.; Zhou, X.; Qin, Z.; Ji, H.; Chen, J. Chin. J. Chem. 2018, 36, 538. |
[75] | Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.J. Adv. Mater. 2015, 27, 5309. |
[76] | Chandrasekaran, S.; Yao, L.; Deng, L.; Bowen, C.; Zhang, Y.; Chen, S.; Lin, Z.; Peng, F.; Zhang, P. Chem. Soc. Rev. 2019, 48, 4178. |
[77] | Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. Adv. Mater. 2016, 28, 1917. |
[78] | Chen, Z.Y.; Liu, J.W.; Cui, H.; Zhang, L.; Su, C.Y. Acta Chim. Sinica 2019, 77, 242 . (in Chinese) |
[78] | 陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242. |
[79] | Xiong, J.; Song, P.; Di, J.; Li, H.; Liu, Z. J. Mater. Chem. A 2019, 7, 25203. |
[80] | Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Adv. Mater. 2019, 31, e1900617. |
[81] | Li, R.; Zhang, W.; Zhou, K. Adv. Mater. 2018, 30, e1705512. |
[82] | Xiao, J.D.; Jiang, H.L. Acc. Chem. Res. 2019, 52, 356. |
[83] | Liu, X.; Li, J.; Li, N.; Li, B.; Bu, X.H. Chin. J. Chem. 2020, 38, 10. |
[84] | Zhao, Y.; Jia, X.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2016, 6, 1501974. |
[85] | Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Chem. Soc. Rev. 2019, 48, 72. |
[86] | Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Adv. Mater. 2011, 23, 4248. |
[87] | Xiang, Q.; Cheng, B.; Yu, J. Angew. Chem. Int. Ed. 2015, 54, 11350. |
[88] | Low, J.; Yu, J.; Ho, W. J. Phys. Chem. Lett. 2015, 6, 4244. |
[89] | Shen, M.; Zhang, L.; Shi, J. Nanotechnology 2018, 29, 412001. |
[90] | Li, J.; Chen, G.; Zhu, Y.; Liang, Z.; Pei, A.; Wu, C.-L.; Wang, H.; Lee, H.R.; Liu, K.; Chu, S.; Cui, Y. Nat. Catal. 2018, 1, 592. |
[91] | Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S.Z. Adv. Mater. 2018, 30, e1800128. |
[92] | Yuan, Z.; Liu, D.; Tian, N.; Zhang, G.; Zhang, Y. Acta Chim. Sinica 2016, 74, 488 . (in Chinese) |
[92] | 袁振洲, 刘丹敏, 田楠, 张国庆, 张永哲, 化学学报, 2016, 74, 488. |
[93] | Zhu, X.; Zhang, T.; Sun, Z.; Chen, H.; Guan, J.; Chen, X.; Ji, H.; Du, P.; Yang, S. Adv. Mater. 2017, 29, 1605776. |
[94] | Li, J.; Gao, X.; Zhu, L.; Ghazzal, M.N.; Zhang, J.; Tung, C.-H.; Wu, L.-Z. Energ. Environ. Sci. 2020, 13, 1326. |
[95] | Zuo, Z.; Li, Y. Joule 2019, 3, 899. |
[96] | Xu, F.; Meng, K.; Zhu, B.; Liu, H.; Xu, J.; Yu, J. Adv. Funct. Mater. 2019, 29, 1904256. |
[97] | Cao, S.; Wang, Y.; Zhu, B.; Xie, G.; Yu, J.; Gong, J.R. J. Mater. Chem. A 2020, 8, 7671. |
[98] | Zhou, J.; Li, J.; Liu, Z.; Zhang, J. Adv. Mater. 2019, 31, e1803758. |
[99] | Waller, P.J.; Gandara, F.; Yaghi, O.M. Acc. Chem. Res. 2015, 48, 3053. |
[100] | Huang, W.; Li, Y. Chin. J. Chem. 2019, 37, 1291. |
[101] | Zeng, Y.; Zou, R.; Zhao, Y. Adv. Mater. 2016, 28, 2855. |
[102] | Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 1. |
[103] | Lohse, M.S.; Stassin, T.; Naudin, G.; Wuttke, S.; Ameloot, R.; De Vos, D.; Medina, D.D.; Bein, T. Chem. Mater. 2016, 28, 626. |
[104] | Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M.A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277. |
[105] | Wang, X.; Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2016, 138, 12332. |
[106] | Lin, C.Y.; Zhang, D.; Zhao, Z.; Xia, Z. Adv. Mater. 2018, 30, 1703646. |
[107] | Peng, P.; Zhou, Z.; Guo, J.; Xiang, Z. ACS Energy Lett. 2017, 2, 1308. |
[108] | Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W. Appl. Catal. B-Environ. 2018, 239, 46. |
[109] | Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J. J. Am. Chem. Soc. 2019, 141, 17431. |
[110] | Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. ACS Sustain. Chem. Eng. 2020, 8, 8214. |
[111] | Wang, H.; Zhang, L.; Zhou, Y.; Qiao, S.; Liu, X.; Wang, W. Appl. Catal. B-Environ. 2020, 263, 118331. |
[112] | Cai, X.; Wang, A.; Wang, J.; Wang, R.; Zhong, S.; Zhao, Y.; Wu, L.; Chen, J.; Bai, S. J. Mater. Chem. A 2018, 6, 17444. |
[113] | Xu, H.; Ouyang, S.; Li, P.; Kako, T.; Ye, J. ACS Appl. Mater. Interfaces 2013, 5, 1348. |
[114] | Liang, L.; Li, X.; Sun, Y.; Tan, Y.; Jiao, X.; Ju, H.; Qi, Z.; Zhu, J.; Xie, Y. Joule 2018, 2, 1004. |
[115] | Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B.I.; Terrones, H.; Terrones, M.; Tay, B.K.; Lou, J.; Pantelides, S.T.; Liu, Z.; Zhou, W.; Ajayan, P.M. Nat. Mater. 2014, 13, 1135. |
[116] | Hou, H.; Zeng, X.; Zhang, X. Sci. China Mater. 2020, 63, 2119. |
[117] | Xiong, J.; Song, P.; Di, J.; Li, H. Appl. Catal. B-Environ. 2019, 256, 117788. |
[118] | Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater. 2018, 28, 1800136. |
[119] | Chen, K.; Wan, X.; Xie, W.; Wen, J.; Kang, Z.; Zeng, X.; Chen, H.; Xu, J. Adv. Mater. 2015, 27, 6431. |
[120] | Fei, F.; Wei, Z.; Wang, Q.; Lu, P.; Wang, S.; Qin, Y.; Pan, D.; Zhao, B.; Wang, X.; Sun, J.; Wang, X.; Wang, P.; Wan, J.; Zhou, J.; Han, M.; Song, F.; Wang, B.; Wang, G. Nano Lett. 2015, 15, 5905. |
[121] | Ha, M.N.; Lu, G.; Liu, Z.; Wang, L.; Zhao, Z. J. Mater. Chem. A 2016, 4, 13155. |
[122] | Li, Y.; Wang, C.; Song, M.; Li, D.; Zhang, X.; Liu, Y. Appl. Catal. B-Environ. 2019, 243, 760. |
[123] | Chen, X.; Li, Q.; Li, J.; Chen, J.; Jia, H. Appl. Catal. B-Environ. 2020, 270, 118915. |
[124] | Wang, S.; Wu, T.; Lin, J.; Ji, Y.; Yan, S.; Pei, Y.; Xie, S.; Zong, B.; Qiao, M. ACS Catal. 2020, 10, 6389. |
[125] | Ma, Z.; Porosoff, M.D. ACS Catal. 2019, 9, 2639. |
[126] | Kim, K.Y.; Lee, H.; Noh, W.Y.; Shin, J.; Han, S.J.; Kim, S.K.; An, K.; Lee, J.S. ACS Catal. 2020, 10, 8660. |
[127] | Numpilai, T.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Energy Convers. Manage. 2019, 180, 511. |
[128] | Dong, Y.; Nie, R.; Wang, J.; Yu, X.; Tu, P.; Chen, J.; Jing, H. Chinese J. Catal. 2019, 40, 1222. |
[129] | Liu, J.-Y.; Gong, X.-Q.; Li, R.; Shi, H.; Cronin, S.B.; Alexandrova, A.N. ACS Catal. 2020, 10, 4048. |
[130] | Li, Z.; Cheng, H.; Li, Y.; Zhang, W.; Yu, Y. ACS Sustain. Chem. Eng. 2019, 7, 4325. |
[131] | Yang, D.; Yu, H.; He, T.; Zuo, S.; Liu, X.; Yang, H.; Ni, B.; Li, H.; Gu, L.; Wang, D.; Wang, X. Nat. Commun. 2019, 10, 3844. |
[132] | Qiu, J.; Wei, W.D. J. Phys. Chem.C 2014, 118, 20735. |
[133] | Yang, H.; He, L.Q.; Hu, Y.W.; Lu, X.; Li, G.R.; Liu, B.; Ren, B.; Tong, Y.; Fang, P.P. Angew. Chem. Int. Ed. 2015, 54, 11462. |
[134] | Liu, X.; Ye, M.; Zhang, S.; Huang, G.; Li, C.; Yu, J.; Wong, P.K.; Liu, S. J. Mater. Chem. A 2018, 6, 24245. |
/
〈 |
|
〉 |