综述

光笼分子与材料研究进展

  • 魏廷文 ,
  • 江龙 ,
  • 陈亚辉 ,
  • 陈小强
展开
  • a 南京工业大学 化工学院 材料化学工程国家重点实验室 南京 211816

魏廷文, 博士, 1990年出生于江苏, 2019年12月于南京工业大学获得工学博士学位, 随后进入南京工业大学材料化学工程国家重点实验室从事博士后研究工作. 主要从事荧光染料、光控活性物质释放和荧光成像的研究.

江龙, 男, 1989年出生于湖北, 2016年毕业于湖北民族大学, 2018年加入南京工业大学陈小强课题组攻读博士学位, 研究方向为化学发光探针的设计及应用.

陈亚辉, 男, 1990年出生于河南, 2015年本科毕业于重庆理工大学, 随后加入南京工业大学陈小强课题组攻读硕士和博士学位, 研究方向为聚集诱导荧光发射(Aggregation-Induced emission, AIE)材料的设计、制备与应用.

陈小强, 博士, 现为南京工业大学教授, 博导. 2008年1月于大连理工大学获得工学博士学位; 2008年1月至2010年2月于韩国梨花女子大学从事博士后工作; 2010年3月进入南京工业大学材料化学工程国家重点实验室工作至今. 主要研究方向: 荧光染料、化学与生物传感器、酶活性荧光探针. 国家自然科学基金优秀青年基金获得者、江苏省杰出青年基金获得者、江苏省“六大人才高峰高层次人才(B类)、江苏省“青蓝工程中青年学术带头人、江苏省“333工程培养对象. 承担国家自然科学基金、江苏省杰出青年基金、省教育厅重点基金等多个项目. 以一作或通讯作者在Chem. Rev.,Chem. Soc. Rev.,Acc. Chem. Res.,Nature Protocols,J. Am. Chem. Soc.,Angew. Chem. Int. Ed.,Biomaterials,Biosensors and Bioelectronics,ACS Appl. Mater. Interfaces,Chem. Commun.,Org. Lett.,Ind. Eng. Chem. Res.等国际学术期刊发表SCI文章100余篇, 获授权专利9项. 论文被他人引用10000余次, 11篇论文入选ESI高被引论文.

* E-mail: ; Fax: 025-83587856

收稿日期: 2020-08-13

  网络出版日期: 2020-09-27

基金资助

国家自然科学基金(21722605); 国家自然科学基金(21978131); 中国博士后科学基金(2020M671462); 江苏省六人才高峰项目(XCL034)

Recent Progress of Photocage Molecules and Materials

  • Tingwen Wei ,
  • Long Jiang ,
  • Yahui Chen ,
  • Xiaoqiang Chen
Expand
  • a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

Received date: 2020-08-13

  Online published: 2020-09-27

Supported by

the National Natural Science Foundation of China(21722605); the National Natural Science Foundation of China(21978131); China Postdoctoral Science Foundation(2020M671462); the Six Talent Peaks Project in Jiangsu Province(XCL034)

摘要

光笼(photocage)是一种用于光控释放的光敏物质, 是以物理和化学等方法将目标释放物与光敏基团及其他功能基团结合形成的对光敏感的物质, 在指定波段的光照射线下, 光笼能够实现目标物的可控释放. 因其具备时空调控、操作简单、易于控制、可修饰性强和对机体损伤小等优点, 使其广泛应用在化学、生物学、材料学和医学等领域. 本综述介绍并讨论了近10年光笼分子与材料在光控释放金属离子、气体、荧光物质、氨基酸、多肽、酶、蛋白质、药物等目标物的研究进展.

本文引用格式

魏廷文 , 江龙 , 陈亚辉 , 陈小强 . 光笼分子与材料研究进展[J]. 化学学报, 2021 , 79(1) : 58 -70 . DOI: 10.6023/A20080361

Abstract

The photocage is a light sensitive substance for photo-controlled release, which is formed by combining the target substance with photosensitive group and other functional groups through physical and chemical methods. Under the irradiation of the specified band, the photocage releases the target substance. It is widely concerned because it can realize space-time control, which means that the time and place of release are controllable. The advantages of simple operation, easy control, strong modification ability and small body damage make it widely used in chemistry, biology, materials science and medicine. In this paper, we introduced and discussed the research progress of photocages in photo-controlled release of metal ions, gases, fluorescent substances, amino acids, peptides, enzymes, proteins, drugs and other target substances in recent 10 years.

参考文献

[1]
Shao, Q.; Xing, B. Chem. Soc. Rev. 2010, 39, 2835.
[2]
Jiang, S.; Liu, J.; Cui, Y.; Wu, H.; Han, L. Chinese J. Org. Chem. 2018, 38, 3219 . (in Chinese)
[2]
蒋绍亮, 刘杰, 崔艳红, 吴华彪, 韩亮, 有机化学, 2018, 38, 3219.
[2]
Miao, S.; Na, Y. Chinese J. Org. Chem. 2018, 38, 575 . (in Chinese)
[2]
苗思文, 那永, 有机化学, 2018, 38, 575.
[2]
Zhao, M.L.; Wang, W.N.; Huang, C.X.; Dong, W.; Wang, Y.; Cheng, S.; Wang, H.Q.; Qian, H.S. Chin. J. Catal. 2018, 39, 1240.
[2]
Xuan, M.; Zhao, J.; Shao, J.; Li, Q.; Li, J. Green Energy Environ. 2017, 2, 18.
[3]
Lu, F.F.; Wu, L.Z.; Zhang, L.P.; Tung, C.H.; Zheng, L.Q. Chinese J. Org. Chem. 2006, 26, 599 . (in Chinese)
[3]
吕锋锋, 吴骊珠, 张丽萍, 佟振合, 郑利强, 有机化学, 2006, 26, 599.
[4]
Deng, Y. Chem. Eng. J. 2018, 337, 220.
[5]
Guo, Z.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16.
[5]
Cao, J.; Zhu, B.; Zheng, K.; He, S.; Meng, L.; Song, J.; Yang, H. Front. Bioeng. Biotechnol. 2019, 7, 487.
[5]
Marvin, C.M.; Ding, S.; White, R.E.; Orlova, N.; Wang, Q.; Zywot, E.M.; Vickerman, B.M.; Harr, L.; Tarrant, T.K.; Dayton, P.A.; Lawrence, D.S. Small 2019, 15, e1901442.
[5]
Wang, Y.; Zhu, D.; Yang, Y.; Zhang, K.; Zhang, X.; Lv, M.; Hu, L.; Ding, S.; Wang, L. Acta Chim. Sinica 2020, 78, 76 . (in Chinese)
[5]
王英美, 朱道明, 杨阳, 张珂, 张修珂, 吕明珊, 胡力, 丁帅杰, 王亮, 化学学报, 2020, 78, 76.
[6]
Li, W.; Ma, Z.; Xin, Z.; Shi, Q. Chin. J. Appl. Chem. 2020, 37, 627 .
[6]
(李伟佳, 马志方, 辛志荣, 石强, 应用化学, 2020, 37, 627. (in Chinese)
[6]
Li, Y.; Shu, Y.; Liang, M.; Xie, X.; Jiao, X.; Wang, X.; Tang, B. Angew. Chem. Int. Ed. 2018, 57, 12415.
[7]
Xu, Y.; Wang, W.; Chen, J.; Lin, S. Chinese J. Org. Chem. 2018, 38, 2161 . (in Chinese)
[7]
徐悦莹, 王伟, 陈健壮, 林绍梁, 有机化学, 2018, 38, 2161.
[7]
Zhai, Y.; Xu, W.; Meng, X.; Hou, H. Acta Chim. Sinica 2020, 78, 256 . (in Chinese)
[7]
翟亚丽, 许文娟, 孟祥茹, 侯红卫, 化学学报, 2020, 78, 256.
[7]
Hu, Z.L.; Li, Z.Y.; Ying, Y.L.; Zhang, J.; Cao, C.; Long, Y.T.; Tian, H. Anal. Chem. 2018, 90, 4268.
[8]
Yu, C.; Shao, S.; Li, H.; Liu, G.; Ding, B.; Ma, P.A.; Lin, J. Chin. J. Appl. Chem. 2018, 35, 1485 . (in Chinese)
[8]
于畅, 邵帅, 李贺杰, 刘国锋, 丁彬彬, 马平安, 林君, 应用化学, 2018, 35, 1485.
[8]
Josts, I.; Niebling, S.; Gao, Y.; Levantino, M.; Tidow, H.; Monteiro, D. IUCrJ 2018, 5, 667.
[9]
Jiang, J.Q.; Gong, Y.H.; Cheng, H.; Liu, X.Y.; Zhang, S.W.; Xu, J. Acta Phys.-Chim. Sin. 2011, 27, 1968 . (in Chinese)
[9]
江金强, 龚韵华, 成浩, 刘晓亚, 张胜文, 徐晶, 物理化学学报, 2011, 27, 1968.
[9]
Lu, M.; Fedoryak, O.D.; Moister, B.R.; Dore, T.M. Org. Lett. 2003, 5, 2119.
[10]
Li, C.; Liu, J.; Xie, N.; Yan, H.; Zhu, M. Polym. Bull. 2015, 142.
[10]
Zheng, T.; Chen, X.; Zhu, L.; Wang, D.; Zou, Q.; Zeng, T.; Chen, W. Chinese J. Org. Chem. 2019, 39, 2492 . (in Chinese)
[10]
郑天骄, 陈炫颖, 朱亮亮, 王道累, 邹祺, 曾涛, 陈文博, 有机化学, 2019, 39, 2492.
[10]
Fu, Y.; Fan, C.; Liu, G.; Cui, S.; Pu, S. Dyes Pigm. 2016, 126, 121.
[11]
Jana, A.; Verma, B.K.; Garai, A.; Kondaiah, P.; Chakravarty, A.R. Inorg. Chim. Acta 2018, 483, 571.
[11]
Valsangkar, V.A.; Chandrasekaran, A.R.; Zhuo, L.; Mao, S.; Lee, G.W.; Kizer, M.; Wang, X.; Halvorsen, K.; Sheng, J. Chem. Commun. 2019, 55, 9709.
[12]
Kaplan, J.H.; Forbush III, B.; Hoffman, J.F. Biochemistry 1978, 17, 1929.
[13]
Wu, Y.; Yang, Z.; Lu, Y. Curr. Opin. Chem. Biol. 2020, 57, 95.
[14]
Yan, Z.; Sun, L.; Hu, C.; Hu, X.; Zeppenfeld, P. Spectrosc. Spectral Anal. 2012, 32, 2718 . (in Chinese)
[14]
鄢志丹, 孙立东, 胡春光, 胡小唐, Peter Zeppenfeld, 光谱学与光谱分析, 2012, 32, 2718.
[15]
Krishnamoorthy, G. J. Biosci. 2018, 43, 555.
[15]
Renz, M. Cytometry, Part A 2013, 83, 767.
[15]
Wolf, D.E. Methods Cell Biol. 2003, 72, 157.
[16]
Resch-Genger, U.; Hoffmann, K.; Nietfeld, W.; Engel, A.; Neukammer, J.; Nitschke, R.; Ebert, B.; Macdonald, R. J. Fluoresc. 2005, 15, 337.
[16]
Zhang, Z.; Wang, F.; Chen, X. Chin. Chem. Lett. 2019, 30, 1745.
[16]
Wang, K.; Kong, Q.; Chen, X.; Yoon, J.; Swamy, K.M.K.; Wang, F. Chin. Chem. Lett. 2020, 31, 1087.
[17]
Impellizzeri, S.; McCaughan, B.; Callan, J.F.; Raymo, F.M. J. Am. Chem. Soc. 2012, 134, 2276.
[18]
Goswami, P.P.; Syed, A.; Beck, C.L.; Albright, T.R.; Mahoney, K.M.; Unash, R.; Smith, E.A.; Winter, A.H. J. Am. Chem. Soc. 2015, 137, 3783.
[19]
Peterson, J.A.; Wijesooriya, C.; Gehrmann, E.J.; Mahoney, K.M.; Goswami, P.P.; Albright, T.R.; Syed, A.; Dutton, A.S.; Smith, E.A.; Winter, A.H. J. Am. Chem. Soc. 2018, 140, 7343.
[20]
Kand, D.; Liu, P.; Navarro, M.X.; Fischer, L.J.; Rousso-Noori, L.; Friedmann-Morvinski, D.; Winter, A.H.; Miller, E.W.; Weinstain, R. J. Am. Chem. Soc. 2020, 142, 4970.
[21]
Goldberg, J.M.; Wang, F.; Sessler, C.D.; Vogler, N.W.; Zhang, D.Y.; Loucks, W.H.; Tzounopoulos, T.; Lippard, S.J. J. Am. Chem. Soc. 2018, 140, 2020.
[22]
Han, L.; Shi, R.; Xin, C.; Ci, Q.; Ge, J.; Liu, J.; Wu, Q.; Zhang, C.; Li, L.; Huang, W. ACS Sens. 2018, 3, 1622.
[23]
Yang, S.; Jiang, J.; Zhou, A.; Zhou, Y.; Ye, W.; Cao, D.S.; Yang, R. Anal. Chem. 2020, 92, 7194.
[24]
Wang, Z.; Dai, Y.; Wang, Z.; Jacobson, O.; Zhang, F.; Yung, B.C.; Zhang, P.; Gao, H.; Niu, G.; Liu, G.; Chen, X. Nanoscale 2018, 10, 1135.
[25]
Sales, T.A.; Prandi, I.G.; Castro, A.A.; Leal, D.H.S.; Cunha, E.; Kuca, K.; Ramalho, T.C. Int. J. Mol. Sci. 2019, 20, 1829.
[26]
Guerin, J.; Leaustic, A.; Berthet, J.; Metivier, R.; Guillot, R.; Delbaere, S.; Nakatani, K.; Yu, P. Chem. Asian J. 2017, 12, 853.
[26]
Ducrot, A.; Tron, A.; Bofinger, R.; Sanz Beguer, I.; Pozzo, J.L.; McClenaghan, N.D. Beilstein J. Org. Chem. 2019, 15, 2801.
[27]
Kennedy, D.P.; Incarvito, C.D.; Burdette, S.C. Inorg. Chem. 2010, 49, 916.
[28]
Bandara, H.M.; Walsh, T.P.; Burdette, S.C. Chemistry 2011, 17, 3932.
[29]
Gwizdala, C.; Basa, P.N.; MacDonald, J.C.; Burdette, S.C. Inorg. Chem. 2013, 52, 8483.
[30]
Basa, P.N.; Antala, S.; Dempski, R.E.; Burdette, S.C. Angew. Chem. Int. Ed. 2015, 54, 13027.
[31]
Basa, P.N.; Barr, C.A.; Oakley, K.M.; Liang, X.; Burdette, S.C. J. Am. Chem. Soc. 2019, 141, 12100.
[32]
Wei, T.; Lu, S.; Sun, J.; Xu, Z.; Yang, X.; Wang, F.; Ma, Y.; Shi, Y.S.; Chen, X. J. Am. Chem. Soc. 2020, 142, 3806.
[33]
Cui, J.; Gropeanu, R.A.; Stevens, D.R.; Rettig, J.; del Campo, A.J. Am. Chem. Soc. 2012, 134, 7733.
[34]
Sutton, M.V.; McKinley, M.; Kulasekharan, R.; Popik, V.V. Chem. Commun. (Camb) 2017, 53, 5598.
[35]
Dozova, N.; Pousse, G.; Barnych, B.; Mallet, J.-M.; Cossy, J.; Valeur, B.; Plaza, P. J. Photochem. Photobiol. A 2018, 360, 181.
[36]
Chen, Q.; Yang, J.; Li, Y.; Zheng, J.; Yang, R. Anal. Chim. Acta 2015, 896, 128.
[37]
Hoang, T.T.; Lee, Y.; Le, P.; Park, K.D. Acta Biomater 2018, 67, 66.
[37]
Wang, Q.; Jiao, X.; Liu, C.; He, S.; Zhao, L.; Zeng, X. J. Mater. Chem. B 2018, 6, 4096.
[38]
McQuilken, A.C.; Ha, Y.; Sutherlin, K.D.; Siegler, M.A.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; Jameson, G.N.; Goldberg, D.P. J. Am. Chem. Soc. 2013, 135, 14024.
[39]
Levy, E.S.; Morales, D.P.; Garcia, J.V.; Reich, N.O.; Ford, P.C. Chem. Commun. (Camb) 2015, 51, 17692.
[40]
Guo, R.; Tian, Y.; Wang, Y.; Yang, W. Adv. Funct. Mater. 2017, 27, 1606398.
[41]
Zhao, Y.; Bolton, S.G.; Pluth, M.D. Org. Lett. 2017, 19, 2278.
[42]
Sharma, A.K.; Nair, M.; Chauhan, P.; Gupta, K.; Saini, D.K.; Chakrapani, H. Org. Lett. 2017, 19, 4822.
[43]
Stacko, P.; Muchova, L.; Vitek, L.; Klan, P. Org. Lett. 2018, 20, 4907.
[44]
Zhang, X.; Tian, G.; Zhang, X.; Wang, Q.; Gu, Z. Acta Chim. Sinica 2019, 77, 406 . (in Chinese)
[44]
张晓蕾, 田甘, 张潇, 王清, 谷战军, 化学学报, 2019, 77, 406.
[44]
Pinto, M.N.; Chakraborty, I.; Sandoval, C.; Mascharak, P.K. J. Controlled Release 2017, 264, 192.
[45]
Feng, W.; Feng, S.; Feng, G. Chem. Commun. 2019, 55, 8987.
[46]
Wang, X.S.; Zeng, J.Y.; Li, M.J.; Li, Q.R.; Gao, F.; Zhang, X.Z. ACS Nano 2020, 14, 9848.
[47]
Elango, R.; Laviano, A. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22,58.
[48]
Vuilleumier, J.; Gaulier, G.; De Matos, R.; Ortiz, D.; Menin, L.; Campargue, G.; Mas, C.; Constant, S.; Le Dantec, R.; Mugnier, Y.; Bonacina, L.; Gerber-Lemaire, S. ACS Appl. Mater. Interfaces 2019, 11, 27443.
[49]
Murayama, S.; Kato, M. Anal. Chem. 2010, 82, 2186.
[49]
von Heijne, G. Annu. Rev. Biochem. 2018, 87, 101.
[50]
Komiya, C.; Aihara, K.; Morishita, K.; Ding, H.; Inokuma, T.; Shigenaga, A.; Otaka, A. J. Org. Chem. 2016, 81, 699.
[51]
So, W.H.; Xia, J. Org. Lett. 2020, 22, 214.
[52]
Wei, T.W.; Wang, F.; Zhang, Z.J.; Qiang, J.; Lv, J.; Chen, T.T.; Li, J.; Chen, X.Q. Curr. Med. Chem. 2019, 26, 3923.
[53]
Feng, M.; Ruan, Z.; Shang, J.; Xiao, L.; Tong, A.; Xiang, Y. Bioconjug. Chem. 2017, 28, 549.
[54]
Zhou, W.; Hankinson, C.P.; Deiters, A. ChemBioChem 2020, 21, 1832.
[55]
Behan, F.M.; Iorio, F.; Picco, G.; Goncalves, E.; Beaver, C.M.; Migliardi, G.; Santos, R.; Rao, Y.H.; Sassi, F.; Pinnelli, M.; Ansari, R.; Harper, S.; Jackson, D.A.; McRae, R.; Pooley, R.; Wilkinson, P.; van der Meer, D.; Dow, D.; Buser-Doepner, C.; Bertotti, A.; Trusolino, L.; Stronach, E.A.; Saez-Rodriguez, J.; Yusa, K.; Garnett, M.J. Nature 2019, 568, 511.
[56]
Lee, T.D.; Lee, O.W.; Brimacombe, K.R.; Shen, M.; Chen, L.; Guha, R.; Tebase, B.; Robey, R.W.; Ambudkar, S.V.; Gottesman, M.M.; Hall, M.D. Cancer Res. 2018, 78, 2.
[57]
Farcas, E.; Bouckaert, C.; Servais, A.C.; Hanson, J.; Pochet, L.; Fillet, M. Anal. Chim. Acta 2017, 984, 211.
[58]
Zhang, L.; Qian, M.; Wang, J. Acta Chim. Sinica 2017, 75, 770 . (in Chinese)
[58]
张留伟, 钱明, 王静云, 化学学报, 2017, 75, 770.
[58]
Fejerskov, B.; Olesen, M.T.J.; Zelikin, A.N. Adv. Drug Delivery Rev. 2017, 118, 24.
[59]
Min, Y.; Li, J.; Liu, F.; Yeow, E.K.; Xing, B. Angew. Chem. Int. Ed. 2014, 53, 1012.
[60]
Horbert, R.; Pinchuk, B.; Davies, P.; Alessi, D.; Peifer, C. ACS Chem. Biol. 2015, 10, 2099.
[61]
Wong, P.T.; Tang, S.; Mukherjee, J.; Tang, K.; Gam, K.; Isham, D.; Murat, C.; Sun, R.; Baker, J.R.; Choi, S.K. Chem. Commun. (Camb) 2016, 52, 10357.
[62]
Wong, P.T.; Tang, S.; Cannon, J.; Chen, D.; Sun, R.; Lee, J.; Phan, J.; Tao, K.; Sun, K.; Chen, B.; Baker, J.R., Jr.; Choi, S.K.Bioconjug. Chem. 2017, 28, 3016.
[63]
Guo, Z.; Ma, Y.; Liu, Y.; Yan, C.; Shi, P.; Tian, H.; Zhu, W.-H. Sci. China: Chem. 2018, 61, 1293.
[64]
Paul, A.; Mengji, R.; Bera, M.; Ojha, M.; Jana, A.; Singh, N.D.P. Chem. Commun. (Camb) 2020, 56, 8412.
[65]
Peterson, J.A.; Fischer, L.J.; Gehrmann, E.J.; Shrestha, P.; Yuan, D.; Wijesooriya, C.S.; Smith, E.A.; Winter, A.H. J. Org. Chem. 2020, 85, 5712.
[66]
Mohamed, R.K.; Mondal, S.; Jorner, K.; Delgado, T.F.; Lobodin, V.V.; Ottosson, H.; Alabugin, I.V. J. Am. Chem. Soc. 2015, 137, 15441.
[67]
Dhamodharan, V.; Nomura, Y.; Dwidar, M.; Yokobayashi, Y. Chem. Commun. (Camb) 2018, 54, 6181.
[68]
Xu, R.; He, M.; Yang, J. Photochem. Photobiol. Sci. 2016, 15, 1442.
[69]
Lineros-Rosa, M.; Miranda, M.A.; Lhiaubet-Vallet, V. Chemistry 2020, 26, 7205.
[70]
Smaga, L.P.; Pino, N.W.; Ibarra, G.E.; Krishnamurthy, V.; Chan, J. J. Am. Chem. Soc. 2020, 142, 680.
文章导航

/