收稿日期: 2020-08-26
网络出版日期: 2020-09-27
基金资助
国家自然科学基金(U1705254); 国家自然科学基金(21931002); 国家自然科学基金(21871068); , 广东省催化化学重点实验室(2020B121201002); 资助项目.
Synthesis and Reactivity Studies of Irida-carbolong Complexes
Received date: 2020-08-26
Online published: 2020-09-27
Supported by
the National Natural Science Foundation of China(U1705254); the National Natural Science Foundation of China(21931002); the National Natural Science Foundation of China(21871068); the Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)
碳龙配合物由一条碳数不少于7的碳链配体鳌合过渡金属而成, 代表了一系列全新的π共轭分子骨架基元, 并表现出独特的光物理性质, 具有很好的应用前景. 通过合理设计多炔化合物, 实现了“一锅法”构筑具有大π共轭体系的铱杂碳龙配合物 4和 5, 首次将碳龙配合物拓展至金属铱体系. 此外, 还研究了 4和 5的配体取代反应, 制备了铱杂碳龙配合物 6~ 9. 所制备的一系列铱杂碳龙配合物在紫外-可见区具有很好的吸收, 部分甚至在近红外区也表现出一定的吸收特性. 光热性能研究表明, 化合物 5具有较好的近红外光热效果: 在808 nm的激光照射下, 含有 5(0.1 mg•mL -1)的乙醇/水溶液在10 min内温度可升高近40 ℃, 这为后续铱杂碳龙配合物的应用研究提供了可能性.
李金华 , 卓庆德 , 卓凯玥 , 陈大发 , 夏海平 . 铱杂碳龙配合物的合成及反应性[J]. 化学学报, 2021 , 79(1) : 71 -80 . DOI: 10.6023/A20080392
The term “carbolong complexes” represents a series of novel π-conjugating aromatic frameworks, which are formed by the chelation of a carbon chain (carbolong ligand) containing not less than 7 carbon atoms with a transition metal fragment. Carbolong complexes show unique photophysical properties, thus exhibiting promising potential applications. Inspired by the efficient strategies for the construction of Os-, Ru-, and Rh-carbolong complexes by the reactions of multiynes with simple metal sources, we describe here the reasonable design of two multiyne compounds 1 and 2, which could react with the iridium precursor [Ir(CH3CN)(CO)(PPh3)2]BF4 ( 3) to produce the irida-carbolong complexes 4 and 5 with a large π conjugation system via a “one-pot” method, respectively. This is the first time to expand the carbolong complex to iridium. In addition, the ligand substitution reactions of 4 and 5have been investigated. Treatment of corresponding ligands with 4 and 5 resulted in the generation of several new irida-carbolong complexes 6~ 9. All the prepared irida-carbolong complexes were fully characterized by NMR and HRMS. The molecular structures of the irida-carbolong complexes 4~ 8 were further confirmed by single crystal X-ray diffractions. A possible mechanism was proposed for the formation of the irida-carbolong complexes on the basis of the X-ray characterization of the key intermediate Int 2. Due to the unique large π conjugation system, all the synthesized irida-carbolong complexes exhibit remarkable absorption properties in the ultraviolet visible region, and some of them even show considerable absorption characteristics in the near infrared region (NIR). The consequently photothermal property investigation indicates that complex 5 has a good NIR photothermal effect: by measuring the temperature of its solution under the NIR laser irradiation (808 nm, 1.0 W•cm -2), the temperature of ethanol/water solution containing 5 (0.1 mg•mL -1) can be increased by nearly 40 ℃ in 10 min, providing numerous possibilities for the follow-up application research based on carbolong complexes.
Key words: carbolong complex; “one-pot” method; iridium; multiyne; photothermal property
| [1] | Selected reviews: (a) He, G.; Xia, H.; Jia, G. Chin. Sci. Bull. 2004, 49, 1543. |
| [1] | Landorf, C.W.; Haley, M.M. Angew. Chem., Int. Ed. 2006, 45, 3914. |
| [1] | Chen, J.; Jia, G. Coord. Chem. Rev. 2013, 257, 2491. |
| [1] | Cao, X.-Y.; Zhao, Q.; Lin, Z.; Xia, H. Acc. Chem. Res. 2014, 47, 341. |
| [1] | Frogley, B.J.; Wright, L.J. Coord. Chem. Rev. 2014, 270-271, 151. |
| [1] | Fernández, I.; Frenking, Gernot.; Merino, G. Chem. Soc. Rev. 2015, 44, 6452. |
| [1] | Frogley, B.J.; Wright, L.J. Chem. -Eur. J. 2018, 24, 2025. |
| [1] | Hua, Y.; Zhang, H.; Xia, H. Chin. J. Org. Chem. 2018, 38, 11 . (in Chinese) |
| [1] | 华煜辉, 张弘, 夏海平, 有机化学, 2018, 38, 11. |
| [2] | Selected reviews: (a) Jia, G.Acc. Chem. Res. 2004, 37, 479. |
| [2] | Chen, J.; He, G.; Jia, G. Chin. J. Org. Chem. 2013, 33, 792 . (in Chinese) |
| [2] | 陈江溪, 何国梅, 贾国成, 有机化学, 2013, 33, 792. |
| [2] | Jia, G. Organometallics 2013, 32, 6852. |
| [3] | Paneque, M.; Posadas, C.M.; Poveda, M.L.; Rendón, N.; Salazar, V.; Oñate, E.; Mereiter, K. J. Am. Chem. Soc. 2003, 125, 9898. |
| [3] | Paneque, M.; Posadas, C.M.; Poveda, M.L.; Rendón, N.; Santos, L.L.; Álvarez, E.; Salazar, V.; Mereiter, K.; Oñate, E. Organometallics 2007, 26, 2403. |
| [3] | Vivancos, Á.; Hernández, Y. A. Paneque, M.; Poveda, M. L.; Salazar, V.; Álvarez, E. Organometallics 2015, 34, 177. |
| [4] | He, G.; Chen, J.; Xia, H.; Sci. Bull. 2016, 61, 430. |
| [4] | Zhou, X.; Zhang, H. Chem. Eur. J. 2018, 24, 8962. |
| [4] | Wang, H.; Zhou, X.; Xia, H. Chin. J. Chem. 2018, 36, 93. |
| [5] | Wei, J.; Zhang, W.; Xi, Z. Chem. Sci. 2018, 9, 560. |
| [6] | Zhang, Y.; Wei, J.; Chi, Y.; Zhang, X.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 5309. |
| [6] | Liu, L.; Zhu, M.; Yu, H.-T.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 13688. |
| [6] | Zhang, Y.; Wei, J.; Zhu, M.; Chi, Y.; Zhang, W.-X.; Ye, S.; Xi, Z. Angew. Chem., Int. Ed. 2019, 58, 9625. |
| [7] | Wei, J.; Zhang, Y.; Chi, Y.; Liu, L.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2016, 138, 60. |
| [7] | An, K.; Shen, T.; Zhu, J. Organometallics 2017, 36, 3199. |
| [7] | Huang, Z.; Zhang, Y.; Zhang, W.-X.; Xi, Z. Organometallics 2019, 38, 2807. |
| [8] | Lv, Z.-J.; Huang, Z.; Shen, J.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2019, 141, 20547. |
| [8] | Wang, K.; Zhou, X. Chin. J. Org. Chem. 2020, 40, 1084 . (in Chinese) |
| [8] | 王凯, 周锡庚, 有机化学, 2020, 40, 1084. |
| [9] | Frogley, B.J.; Wright, L. Angew. Chem., Int. Ed. 2017, 56, 143. |
| [9] | Ruan, W.; Leung, T.-F.; Shi, C.; Lee, K.H.; Sung, H.H.Y.; Williams, I.D.; Lin, Z.; Jia, G. Chem. Sci. 2018, 9, 5944. |
| [9] | Talavera, M. Peña-Gallego, A. Alonso-Gómez, J.L. Bolaño, S.; Chem. Commun., 2018, 54, 10974. |
| [9] | Zhang, M.-X.; Xu, Z.; Lu, T.; Yin, J.; Liu, S.H. Chem. Eur. J. 2018, 24, 14891. |
| [9] | Zhang, M.-X.; Zhang, J.; Jin, X.; Sun, X.; Yin, J.; Hartl, F.; Liu, S.H. Chem. Eur. J. 2018, 24, 18998. |
| [9] | Hu, Y.X.; Zhang, J.; Wang, X.; Lu, Z.; Zhang, F.; Yang, X.; Ma, Z.; Yin, J.; Xia, H.; Liu, S.H. Chem. Sci. 2019, 10, 10894. |
| [9] | Chu, Z.; He, G.; Cheng, X.; Deng, Z.; Chen, J. Angew. Chem., Int. Ed. 2019, 58, 9174. |
| [10] | Zhu, C.; Xia, H. Acc. Chem. Res. 2018, 51, 1691. |
| [10] | Luo, M.; Hua, Y.; Zhuo, K.; Long, L.; Lin, X.; Deng, Z.; Lin, Z.; Zhang, H.; Chen, D.; Xia, H. CCS Chem. 2020, 2, 758. |
| [10] | Lin, J.; Xu, Q.; Lin, X.; Hua, Y.; Chen, D.; Ruan, Y.; Zhang, H.; Xia, H. Chin. J. Chem. 2020, 38, 1273. |
| [11] | Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P.v.R.; Xia, H. Nat. Chem. 2013, 5, 698. |
| [12] | Zhu, C.; Yang, Y.; Luo, M.; Yang, C.; Wu, J.; Chen, L.; Liu, G.; Wen, T.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 6181. |
| [12] | Yang, C.; Lin, G.; Zhu, C.; Pang, X.; Wang, X.; Li, X.; Wang, B.; Xia, H.; Liu, G. J. Mater. Chem. B, 2018, 6, 2528. |
| [12] | Zhou, X.; Pang, X.; Nie, L.; Zhu, C.; Zhuo, K.; Zhuo, Q.; Chen, Z.; Liu, G.; Zhang, H.; Lin, Z.; Xia, H. Nat. Commun. 2019, 10, 1488. |
| [13] | Zhu, C.; Yang, C.; Wang, Y.; Lin, G.; Yang, Y.; Wang, X.; Zhu, J.; Chen, X.; Lu, X.; Liu, G.; Xia, H. Sci. Adv. 2016, 6, e1601031/1. |
| [14] | Li, R.; Lu, Z.; Cai, Y.; Jiang, F.; Tang, C.; Chen, Z.; Zheng, J.; Pi, J.; Zhang, R.; Liu, J.; Chen, Z.-B.; Yang, Y.; Shi, J.; Hong, W.; Xia, H. J. Am. Chem. Soc. 2017, 139, 14344. |
| [15] | Zhang, H.; Zhao, H.; Zhuo, K.; Hua, Y.; Chen, J.; He, X.; Weng, W.; Xia, H. Polym. Chem. 2019, 10, 386. |
| [15] | Chen, Y.; Yang, L.; Zheng, W.; Ouyang, P.; Zhang, H.; Ruan, Y.; Weng, W.; He, X.; Xia, H. ACS Macro Lett. 2020, 9, 344. |
| [16] | Zhuo, Q.; Lin, J.; Hua, Y.; Zhou, X.; Shao, Y.; Chen, S.; Chen, Z.; Zhu, J.; Zhang, H.; Xia, H. Nat. Commun. 2017, 8, 1912. |
| [17] | Zhuo, Q.; Zhang, H.; Hua, Y.; Kang, H.; Zhou, X.; Lin, X.; Chen, Z.; Lin, J.; Zhuo, K.; Xia, H. Sci. Adv. 2018, 4, eaat0336. |
| [17] | Li, J.; Kang, H.; Zhuo, K.; Zhuo, Q.; Zhang, H.; Lin, Y.-M.; Xia, H. Chin. J. Chem. 2018, 36, 1156. |
| [18] | Zhuo, Q.; Zhang, H.; Ding, L.; Lin, J.; Zhou, X.; Hua, Y.; Zhu, J.; Xia, H. iScience 2019, 19, 1214. |
| [19] | Schröder, F.G.; Sundermeyer, J. Organometallics 2015, 34, 1017. |
| [19] | Hariharan, P.S.; Mariyatra, M.B.; Mothi, E.M.; Neels, A. Rosair, G.; Anthony, S.P. New. J. Chem. 2017, 41, 4592. |
| [20] | Bleeke, J.R.; Behm, R. J. Am. Chem. Soc. 1997, 119, 8503. |
| [20] | Clark, G.R.; Johns, P.M.; Roper, W.R.; Wright, L.J. Organometallics 2008, 27, 451. |
| [21] | Wu, H.-P.; Ess, D.H.; Lanza, S.; Weakley, T.J.R.; Houk, K.N.; Baldridge, K.K.; Haley, M.M. Organometallics 2007, 26, 3957. |
| [22] | O'Connor, J.M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9663. |
| [22] | O'Connor, J.M.; Pu, L.; Chadha, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 543. |
| [23] | Zhu, C.; Luo, M.; Zhu, Q.; Zhu, J.; Schleyer, P. v R.; Wu, J.I.-C.; Lu, X.; Xia, H. Nat. Commun. 2014, 5, 3265. |
| [24] | Ilg, K.; Werner, H. Organometallics 2001, 20, 3782. |
| [24] | Chin, C.S.; Kim, M.; Lee, H.; Noh, S.; Ok, K.M. Organometallics 2002, 21, 4785. |
| [24] | Torres, O.; Martín, M.; Sola, E. Organometallics 2010, 29, 3201. |
| [25] | Li, J.; Lin, Y.-M.; Zhang, H.; Chen, Y.; Lin, Z.; Xia, H. Chem. -Eur. J. 2019, 25, 5077. |
| [25] | Wu, F.; Huang, W.; Zhuo, K.; Hua, Y.; Lin, J.; He, G.; Chen, J.; Nie, L.; Xia, H. Chin. J. Org. Chem. 2019, 39, 1743 . (in Chinese) |
| [25] | 吴凡, 黄文超, 卓凯玥, 华煜晖, 林剑锋, 何国梅, 陈江溪, 聂立铭, 夏海平, 有机化学, 2019, 39, 1743. |
| [25] | Lu, Z.; Zhu, Q.; Cai, Y.; Chen, Z.; Zhuo, K.; Zhu, J.; Zhang, H.; Xia, H. Sci. Adv. 2020, 6, eaay2535. |
| [26] | Bedard, T.C.; Moore, J.S. J. Am. Chem. Soc. 1995, 117, 10662. |
| [27] | Dubé, P.; Toste, F.D. J. Am. Chem. Soc. 2006, 128, 12062. |
| [28] | Kaiser, R.P.; Hessler, F.; Mosinger, J.; Císařová, I.; Kotora, M. Chem. Eur. J. 2015, 21, 13577. |
/
| 〈 |
|
〉 |