综述

纳米材料与细菌结合应用于肿瘤治疗

  • 曹萌轩 ,
  • 代晓光 ,
  • 陈贝贝 ,
  • 赵娜娜 ,
  • 徐福建
展开
  • 北京化工大学 材料科学与工程学院 化工资源有效利用国家重点实验室 生物医用材料北京实验室 北京 100029
曹萌轩,北京化工大学材料科学与工程学院2017级本科生,主要研究兴趣为纳米递送载体的制备及其在肿瘤治疗中的应用;代晓光,2016年在齐齐哈尔大学材料科学与工程学院毕业获得学士学位;2019年在北京化工大学材料科学与工程学院毕业获得硕士学位.2019年9月,进入北京化工大学北京实验室做科研助理.主要研究的方向是纳米材料的合成及生物医学应用;陈贝贝,2018年于北京化工大学材料科学与工程学院取得学士学位,现于北京化工大学徐福建教授和赵娜娜教授指导下就读硕士研究生,主要从事特殊形貌复合纳米材料的制备与抗肿瘤应用的研究;赵娜娜,教授,博士生导师.2008年毕业于北京大学,获博士学位.随后在加拿大多伦多大学和美国劳伦斯伯克利国家实验室从事博士后研究,2012年加入北京化工大学材料学院.主要从事医用纳米材料方面的基础研究工作,基于无机纳米材料的控制合成和表面功能化设计构筑有机/无机复合纳米材料,研究其作为药物、基因控释载体及在诊疗中的应用.2017年入选北京化工大学青年英才百人计划A类,2019年获得国家优秀青年科学基金资助;徐福建,博士,教授、博士生导师、国家杰出青年科学基金获得者、长江学者特聘教授.2009年加盟北京化工大学,现担任材料学院常务副院长、生物医用材料北京实验室执行主任、天然高分子医用材料教育部重点实验室主任.1999年获华东理工大学学士学位;2002年获中国科学院过程工程研究所硕士学位;2006年获新加坡国立大学博士学位.主要从事医用高分子材料应用基础研究,在药物控释载体、抗菌材料以及多糖功能化方面开展了广泛研究.兼任中国人民解放军总医院客座教授,英国皇家化学会期刊Biomaterials Science杂志副主编.在Adv.Mater.,ACS Nano,Biomaterials等国际期刊发表论文200余篇.2012年获中组部万人计划青年拔尖人才,2013年获得国家杰出青年科学基金资助,2014年获得长江学者奖励计划特聘教授,2018年入选北京高校卓越青年科学家计划.

收稿日期: 2020-07-07

  网络出版日期: 2020-08-10

基金资助

项目受国家重点研究发展计划(No.2016YFA0201501)、国家自然科学基金(Nos.51773013,51922022)、北京高校卓越青年科学家计划项目(No.BJJWZYJH01201910010024)和中央高校基本科研业务费专项(Nos.BHYC1705A,XK1802-2)资助.

Combination of Nanomaterials and Bacteria for Tumor Treatment

  • Cao Mengxuan ,
  • Dai Xiaoguang ,
  • Chen Beibei ,
  • Zhao Nana ,
  • Xu Fu-Jian
Expand
  • State Key Laboratory of Chemical Resource Engineering, College of Material Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2020-07-07

  Online published: 2020-08-10

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFA0201501), National Natural Science Foundation of China (Nos. 51773013 and 51922022), Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910010024), and Fundamental Research Funds for the Central Universities (Nos. BHYC1705A and XK1802-2).

摘要

纳米材料在肿瘤治疗中有着广泛的应用,但其存在靶向效率低、肿瘤穿透性差以及副作用明显等缺点.细菌及其分泌物具有靶向肿瘤乏氧部位、肿瘤渗透能力强、刺激免疫应答的特点,但其安全性和单独使用疗效低的问题仍需解决.将纳米材料与细菌结合起来,可以补足彼此的缺陷,在肿瘤治疗中有很大的应用潜力.这篇综述中,我们根据细菌在治疗中起的作用,将细菌与纳米材料结合的作用方式分为三类:细菌与纳米材料形成复合物来增强肿瘤靶向、细菌的生物酶发生酶促反应以及细菌分泌物结合纳米材料用于抗肿瘤.通过典型示例重点介绍了近年来用纳米材料与细菌结合增强肿瘤治疗的研究,并讨论其增强机制,同时进行了前景展望.

本文引用格式

曹萌轩 , 代晓光 , 陈贝贝 , 赵娜娜 , 徐福建 . 纳米材料与细菌结合应用于肿瘤治疗[J]. 化学学报, 2020 , 78(10) : 1054 -1063 . DOI: 10.6023/A20070295

Abstract

Nowadays malignant tumors are still one of the disastrous diseases. It is necessary to explore new strategies for the treatment of malignant tumor. Nanomaterials refer to materials with at least one dimension of the three dimensions in the nanometer range (1~100 nm). They show a wide range of applications in tumor treatment while disadvantages of low targeting efficiency, poor tumor penetration and obvious side effects still limit their applications. As a method for tumor treatment, bacterial therapy has a long history. Some facultative anaerobic and obligate anaerobic bacteria and their secretions have the characteristics of targeting hypoxic tumor tissue, strong tumor penetration and stimulating immune responses. After genetically modification or attenuation treatment, it can be used for tumor treatment. However, the safety issues and low therapeutic efficiency still needs to be solved. The combination of nanomaterials and bacteria can complement the limitation of each other, and shows great potential in tumor therapy. On one hand, bacteria could enhance the targeting efficiency of nanomaterials, and decrease the side effects. On the other hand, nanomaterials could help improve the safety and solve the problem of low therapeutic efficiency of bacterial therapy. In this review, the combination of nanomaterials and bacteria is divided into three categories based on the role of bacteria in the treatment. Firstly, the preparation of composites of nanomaterials and bacteria by chemical bonds, electrostatic interaction, and other ways to enhance tumor targeting. Secondly, bacterial enzyme could react with nanomaterials to control the release of drug. Thirdly, secretions of bacteria after plasmids were introduced and outer membrane vesicles secreted by bacteria could be combined with nanomaterials for anti-tumor therapy. The mechanisms of the combination therapy are also discussed. Finally, we summarized and discussed the current challenges, especially the safety of the combination therapy. The prospect of the combination of nanomaterials and bacterial for tumor treatment is also proposed.

参考文献

[1] Zhao, N.; Yan, L..; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F. J. Chem. Rev. 2019, 119, 1666.
[2] Lim, E. K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y. M.; Lee, K. Chem. Rev. 2015, 1195, 327.
[3] Wang, Y. M.; Zhu, D. M.; Yang, Y.; Zhang, K.; Zhang, X. K.; Lv, M. S.; Hu, L.; Ding, S. J.; Wang, L. Acta Chim. Sinica 2020, 78, 76. (王英美, 朱道明, 杨阳, 张珂, 张修珂, 吕明珊, 胡力, 丁帅杰, 王亮, 化学学报, 2020, 78, 76.)
[4] Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156. (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[5] Lin, H.; Chen, Y.; Shi, J. L. Chem. Soc. Rev. 2018, 47, 1938.
[6] Li, J. C.; Pu, K. Y. Chem. Soc. Rev. 2019, 48, 38.
[7] Wong, P. T.; Choi, S. K. Chem. Rev. 2015, 115, 3388.
[8] Dai, Y. L.; Xu, C.; Sun, X. L.; Chen X. Y. Chem. Soc. Rev. 2017, 46, 3830.
[9] Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Chem. Rev. 2016, 116, 2826.
[10] Maeda, H. Bioconjugate Chem. 2010, 21, 797.
[11] Yang, L. M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047. (杨立敏, 刘波, 李娜, 唐波, 化学学报, 2017, 75, 1047.)
[12] Zhang, L. W.; Qian, M.; Wang, J. Y. Acta Chim. Sinica 2017, 75, 770. (张留伟, 钱明, 王静云, 化学学报, 2017, 75, 770.)
[13] Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Chem. Soc. Rev. 2019, 48, 3771.
[14] Wilson, W. R.; Hay, M. P. Nat. Rev. Cancer 2011, 11, 393.
[15] (a) Patyar, S.; Joshi, R.; Byrav, D. S. P.; Prakash, A.; Medhi, B.; Das, B. K. J. Biomed. Sci. 2010, 17, 21. (b) Malmgren, R. A.; Flanigan, C. C. Cancer Res. 1955, 15, 473. (c) Zhao, M.; Yang, M.; Li, X. M.; Jiang, P.; Baranov, E.; Li, S.; Xu, M. X.; Penman, S.; Hoffman, R. M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 755. (d) Sedighi, M.; Bialvaei, A. Z.; Hamblin, M. R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E. Cancer Med. 2019, 8, 3167.
[16] Chen, F. M.; Li, N.; Xing, J. H.; Zheng, M. B.; Zhong, Y.; Luo, Y. M.; Ma, A. Q.; Cui, L.; Cai, L. T. Prog. Biochem. Biophys. 2019, 46, 1162. (陈辅明, 李娜, 邢婕华, 郑明彬, 钟莹, 罗英梅, 马爱青, 崔燎, 蔡林涛, 生物化学与生物物理进展, 2019, 46, 1162.)
[17] Liu, S. C.; Minton, N. P.; Giaccia, A. J.; Brown, J. M. Gene Ther. 2002, 9, 291.
[18] Yu, Y. A.; Shabahang, S.; Timiryasova, T. M.; Zhang, Q.; Beltz, R.; Gentschev, I.; Goebel, W.; Szalay, A. A. Nat. Biotechnol. 2004, 22, 313.
[19] Broadway, K. M.; Suh, S.; Behkam, B.; Scharf, B. E. J. Biotechnol. 2017, 251, 76.
[20] Toso, J. F.; Gill, V. J.; Hwu, P.; Marincola, F. M.; Restifo, N. P.; Schwartzentruber, D. J.; Sherry, R. M.; Topalian, S. L.; Yang, J. C.; Stock, F.; Freezer, L. J.; Morton, K. E.; Seipp, C.; Haworth, L.; Mavroukakis, S.; White, D.; MacDonald, S.; Mao, J.; Sznol, M.; Rosenberg, S. A. J. Clin. Oncol. 2002, 20, 142.
[21] Charbonneau, M. R.; Isabella, V. M.; Li, N.; Kurtz, C. B. Nat. Commun. 2020, 11, 1738.
[22] Afkhami-Poostchi, A.; Mashreghi, M.; Iranshahi, M.; Matin, M. M. Int. J. Pharm. 2020, 579, 119159.
[23] Hayashi, K.; Zhao, M.; Yamauchi, K.; Yamamoto, N.; Tsuchiya, H.; Tomita, K.; Hoffman, R. B. J. Cell. Biochem. 2009, 106, 992.
[24] Zheng, J. H.; Nguyen, V. H.; Jiang, S. N.; Park, S. H.; Tan, W. Z.; Hong, S. H.; Shin, M. G.; Chung, I. J.; Hong, Y.; Bom, H. S.; Choy, H. E.; Lee, S. E.; Rhee, J. H.; Min, J. J. Sci. Transl. Med. 2017, 9, eaak9537.
[25] Yang, X. G.; Yang, Z. Q.; Sun, Z. G. Med. Recapitulate 2012, 18, 2001. (杨旭光, 杨志奇, 孙振纲, 医学综述, 2012, 18, 2001.)
[26] Oelschlaeger, T. A. Bioengineered 2010, 1, 146.
[27] Felfoul, O.; Mohammadi, M.; Taherkhani, S.; Lanauze, D. D.; Xu, Z. Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M.; Gaboury, L.; Tabrizian, M.; Kaou, N.; Atkin, M.; Vuong, T.; Batist, G.; Beauchemin, N.; Radzioch, D. Martel, S. Nat. Nanotechnol. 2016, 11, 941.
[28] Chen, F. M.; Zang, Z. S.; Chen, Z.; Cui, L.; Chang, Z. G.; Ma, A. Q.; Yin, T.; Liang, R. J.; Han, Y. T.; Wu, Z. H.; Zheng, M. B.; Liu, C. L.; Cai, L. T. Biomaterials 2019, 214, 119226.
[29] Bazylinski, D. A.; Williams, T. J.; Lefe`vre, C. T.; Berg, R. J.; Zhang, C. L.; Bowser, S. S.; Dean, A. J.; Beveridge, T. J. Int. J. Syst. Evol. Microbiol. 2013, 63, 801.
[30] Xie, S. Z.; Zhao, L.; Song, X. J.; Tang, M. S.; Mo, C. F.; Li, X. H. J. Controlled Release 2017, 268, 390.
[31] Luo, Y.; Xu, D.; Gao, X.; Xiong, J.; Jiang, B. L.; Zhang, Y.; Wang, Y. T.; Tang, Y.; Chen, C.; Qiao, H.; Li, H. N.; Zou, J. Z. Biochem. Biophys. Res. Commun. 2019, 514, 1147.
[32] Chen, Q. W.; Liu, X. H.; Fan, J. X.; Peng, S. Y.; Wang, J. W.; Wang, X. N.; Zhang, C.; Liu, C. J.; Zhang, X. Z. Adv. Funct. Mater. 2020, 30, 1909806.
[33] Wu, M.; Wu, W. B.; Duan, Y. K.; Li, X. Q.; Qi, G. B.; Liu, B. Chem. Mater. 2019, 31, 7212.
[34] Hu, Q. L.; Wu, M.; Fang, C.; Cheng, C. Y.; Zhao, M. M.; Fang, W. H.; Chu, P. K.; Ping, Y.; Tang, G. P. Nano Lett. 2015, 15, 2732.
[35] Chen, J.; Shen, C. Q.; Zheng, C. H.; Li, Y. W.; Lü, J. G.; Zhang, W. N.; Zhou, Y. J.; Zhu, J. Acta Chim. Sinica 2007, 65, 547. (陈军, 盛春泉, 郑灿辉, 李耀武, 吕加国, 张万年, 周有骏, 朱驹, 化学学报, 2007, 65, 547.)
[36] Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Nano Lett. 2016, 16, 3493.
[37] Hyre, D. E.; Trong, I. L.; Merritt, E. A.; Eccleston, J. F.; Green, N. M.; Stenkamp, R. E.; Stayton, P. S. Protein Sci. 2006, 15, 459.
[38] Suh, S. B.; Jo, A.; Traore, M. A.; Zhan, Y.; Coutermarsh-Ott, S. L.; Ringel-Scaia, V. M.; Allen, I. C.; Davis, R. M.; Behkam, B. Adv. Sci. 2019, 6, 1801309.
[39] Uthaman, S.; Zheng, S. H.; Han, J.; Choi, Y. J.; Cho, S.; Nguyen, V. D.; Park, J. O.; Park, S. H.; Min, J. J.; Park, S.; Park, I. K. Adv. Healthcare Mater. 2016, 5, 288.
[40] Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. ACS Nano 2018, 12, 5995.
[41] Kuo, W. S.; Wu, C. M.; Yang, Z. S.; Chen, S. Y.; Chen, C. Y.; Huang, C. C.; Li, W. M.; Sunc, C. K.; Yeh, C. S. Chem. Commun. 2008, 37, 4430.
[42] Liu, Y.; Zhou, M.; Luo, D.; Wang, L. J.; Hong, Y. K.; Yang, Y. P.; Sha, Y. L. Biochem. Biophys. Res. Commun. 2012, 425, 769.
[43] Wang, Y.; Zhou, Z. X.; Chen, W. F.; Qin, M.; Zhang, Z. R.; Gong, T.; Sun, X. J. Controlled Release 2018, 280, 39.
[44] Marietta, M. A.; Yoon, P. S.; Iyengar, R.; Leaf, C. D.; Wishnok, J. S. Biochemistry 1988, 27, 8706.
[45] Chen, L. J.; He, Q. J.; Lei, M. Y.; Xiong, L. W.; Shi, K.; Tan, L. W.; Jin, Z. K.; Wang, T. F.; Qian, Z. Y. ACS Appl. Mater. Interfaces 2017, 9, 36473.
[46] Zheng, D. W.; Chen, Y.; Li, Z. H.; Xu, L.; Li, C. X.; Li, B.; Fan, J. X.; Cheng, S. X.; Zhang, X. Z. Nat. Commun 2018, 9, 1680.
[47] Wang, S. B.; Liu, X. H.; Li, B.; Fan, J. X.; Ye, J. J.; Cheng, H.; Zhang, X. Z. Adv. Funct. Mater. 2019, 29, 1904093.
[48] Xiong, M. H.; Bao, Y.; Du, X. J.; Tan, Z. B.; Jiang, Q.; Wang, H. X.; Zhu, Y. H.; Wang, J. ACS Nano 2013, 7, 10636.
[49] Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B.; Singh, A. V.; Sitti, M. Adv. Drug Delivery Rev. 2016, 106, 27.
[50] Gao, X. H.; Weng, M. L.; Cao, H.; Li, Y. Q.; Li, M. G. Acta Chim. Sinica 2006, 64, 1163. (高旭红, 文孟良, 曹槐, 李一青, 李铭刚, 化学学报, 2006, 64, 1163.)
[51] Toyofuku, M.; Nomura, N.; Eberl, L. Nat. Rev. Microbiol. 2019, 17, 13.
[52] Yi, J.; Liu, Q.; Kong, Q. K. Acta Microbiol. Sin. 2016, 56, 911. (易洁, 刘青, 孔庆科, 微生物学报, 2016, 56, 911.)
[53] Fan, J. X.; Peng, M. Y.; Wang, H.; Zheng, H. R.; Liu, Z. L.; Li, C. X.; Wang, X. N.; Liu, X. H.; Cheng, S. X.; Zhang, X. Z. Adv. Mater. 2019, 31, 1808278.



[54] Fan, J. X.; Li, Z. H.; Liu, X. H.; Zheng, D. W.; Chen, Y.; Zhang, X. Z. Nano Lett. 2018, 18, 2373.
[55] Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang L. F. Nano Lett. 2015, 15, 1403.
[56] Huang, Y. K.; Beringhs, A. O.; Chen, Q.; Song, D. H.; Chen, W.; Lu, X. L.; Fan, T. H.; Nieh, M. P.; Lei, L. ACS Appl. Bio Mater. 2019, 2, 5608.
[57] Gujrati, V.; Kim, S.; Kim, S. H.; Min, J. J.; Choy, H. E.; Kim, S. C.; Jon, S. ACS Nano 2014, 8, 1525.
[58] Kim, O. Y.; Dinh, N. T. H.; Park, H. T.; Choi, S. J.; Hong, K.; Gho, Y. S. Biomaterials 2017, 113, 68.
[59] Huang, W. W.; Shu, C. Y.; Hua, L. Q.; Zhao, Y. L.; Xie, H. H.; Qi, J. L.; Gao, F. L.; Gao, R. Y.; Chen, Y. J.; Zhang, Q. S.; Li, W. R.; Yuan, M. C.; Ye, C.; Ma, Y. B. Acta Biomater. 2020, 108, 300.
[60] Kuerbana, K.; Gao, X. W.; Zhang, H.; Liu, J. Y.; Dong, M. X.; Wu, L. N.; Ye, R. H.; Feng, M. Q.; Ye, L. Acta Pharm. Sin. B 2020, 10, 1534.
[61] Li, M.; Li, S. Y.; Zhou, H.; Tang, X. F.; Wu, Y.; Jiang, W.; Tian, Z. G.; Zhou, X. C.; Yang, X. Z.; Wang, Y. C. Nat. Commun. 2020, 11, 1126.
[62] Chen, Q.; Bai, H. Z.; Wu, W. T.; Huang, G. J.; Li, Y.; Wu, M.; Tang, G. P.; Ping, Y. Nano Lett. 2020, 20, 11.
[63] Chen, Q.; Huang, G. J.; Wu, W. T.; Wang, J. W.; Hu, J. W.; Mao, J. M.; Chu, P. K.; Bai, H. Z.; Tang, G. P. Adv. Mater. 2020, 32, 1908185.
[64] Liu, Y.; Hong, L.; Yu, L. S.; Jiang, H. D.; Chen, J. Z.; Meng, Q.; Chen, S. Q.; Zeng, S. Acta Pharm. Sin. 2011, 46, 19. (刘瑶, 洪岚, 余露山, 蒋惠娣, 陈建忠, 孟琴, 陈枢青, 曾苏, 药学学报, 2011, 46, 19.)
[65] Sevastre, A. S.; Horescu, C.; Baloi, S. C.; Cioc, C. E.;Vatu, B. I.; Tuta, C.; Artene, S. A.; Danciulescu, M. M.; Tudorache, S.; Dricu, A. Coatings 2019, 9, 628.

文章导航

/