研究论文

不同结构烷基铝催化异戊二烯齐聚与聚合行为研究

  • 彭伟 ,
  • 戚佩瑶 ,
  • 董凯旋 ,
  • 贺爱华
展开
  • 山东省烯烃催化与聚合重点实验室 橡塑材料与工程教育部重点实验室 青岛科技大学高分子科学与工程学院 青岛 266042

收稿日期: 2020-07-30

  网络出版日期: 2020-10-12

基金资助

项目受山东省重大科技创新项目(No.2019JZZY010352)及泰山学者工程资助.

Oligomerization and Polymerization of Isoprene Catalyzed by Alkylaluminium with Different Structures

  • Peng Wei ,
  • Qi Peiyao ,
  • Dong Kaixuan ,
  • He Aihua
Expand
  • Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Received date: 2020-07-30

  Online published: 2020-10-12

Supported by

Project supported by the Major Scientific and Technological Innovation Project of Shandong Province (No. 2019JZZY010352) and Taishan Scholar Program.

摘要

烷基铝(AlR3)作为Ziegler-Natta催化剂体系的助催化剂组分,起到烷基化、还原主金属化合物、参与活性中心形成与演变、链转移剂等重要作用.然而烷基铝自身对二烯烃单体也具有催化作用.本工作采用不同结构烷基铝如三乙基铝(AlEt3)、三异丁基铝(Al(i-Bu)3)、氢化二异丁基铝(AlH(i-Bu)2)、一氯二乙基铝(AlEt2Cl)、二氯一乙基铝(AlEtCl2),研究了烷基铝的种类和浓度对异戊二烯催化行为的影响.采用核磁共振氢谱(1H NMR)、凝胶渗透色谱(GPC)、气相色谱-质谱联用(GC-MS)等对产物的微观结构(顺式-1,4-和反式-1,4-含量)和分子量及分布等进行了表征,探讨了不同结构烷基铝的催化行为.发现烷基铝不仅可以催化异戊二烯齐聚,与微量水作用后还可以引发异戊二烯阳离子聚合,得到顺反混合结构的线性聚合物.烷基铝浓度对其催化行为有较大影响.当n(Al)/n(M)=1050×10-5时,AlEtCl2的催化活性显著提高,产物主要为线性聚合物;而其他结构烷基铝的催化活性较低.当n(Al)/n(M)≤350×10-5,烷基铝自身催化异戊二烯齐聚及聚合能力极弱.过低和过高的烷基铝浓度都不利于获得高分子量聚合物.这为深入理解Ziegler-Natta催化剂体系烷基铝组分的催化作用及其对聚合物的影响提供依据.

本文引用格式

彭伟 , 戚佩瑶 , 董凯旋 , 贺爱华 . 不同结构烷基铝催化异戊二烯齐聚与聚合行为研究[J]. 化学学报, 2020 , 78(12) : 1418 -1425 . DOI: 10.6023/A20070336

Abstract

Alkylaluminium (AlR3), as co-catalyst component in Ziegler-Natta catalytic system, plays important roles in the alkylation, forming and changing the structure and concentration of active centers through the reduction and reversible adsorption-desorption reactions with the metal compound of the catalyst, acting as chain transfer agent, etc. However, the alkylaluminium itself do have the catalytic effect on the conjugated diene monomers. In this article, alkylaluminium with different structures such as triethylaluminium (AlEt3), triisobutylaluminium (Al(i-Bu)3), diisobutylaluminium hydride (AlH(i-Bu)2), diethylaluminium chloride (AlEt2Cl), ethylaluminium dichloride (AlEtCl2) were used to catalyze isoprene oligomerization and polymerization. The effects of the structure and concentration of alkylaluminiums (n(Al)/n(M)=7×10-5, 35×10-5, 350×10-5, 1050×10-5) on the catalytic behaviors of isoprene were studied. The microstructure (trans-1,4 and cis-1,4), molecular weight and molecular weight distribution of the products were characterized by 1H nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS). It was found that alkylaluminium could initiate oligomerization and cationic polymerization of isoprene under the minor incorporation of H2O, which were affected greatly by the structure and concentration of alkylaluminium. Using AlEtCl2 led to the highest catalytic activity and produced products containing more linear polymers with mixed cis-1,4/trans-1,4 structures when n(Al)/n(M)=1050×10-5. The Al(i-Bu)3 and AlH(i-Bu)2 didn't have basically cation initiation ability, which led to isoprene oligomerization. The alkylaluminium with n(Al)/n(M) ≤ 350×10-5 had negligible influence on the isoprene polymerization and oligomerization. And lower or higher alkylaluminium concentration were not beneficial to obtain polyisoprene with high molecular weight. The catalytic mechanism of alkylaluminium on isoprene was discussed, which provided a further understanding on the catalytic behavior of alkylaluminium components in Ziegler-Natta catalyst and the effect of alkylaluminium on polymers.

参考文献

[1] Mori, H.; Hasebe, K.; Terano, M. Polymer 1999, 40, 1389.
[2] Yang, H. R.; Zhang, L. T.; Zang, D. D.; Fu, Z. S.; Fan, Z. Q. Catal. Commun. 2015, 62, 104.
[3] Bahri-Laleh, N.; Correa, A.; Mehdipour-Ataei, S.; Arabi, H.; Haghighi, M. N.; Zohuri, G.; Cavallo, L. Macromolecules 2011, 44, 778.
[4] Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Chem. Phys. 2002, 203, 2412.
[5] Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Chem. Phys. 2003, 204, 395.
[6] Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M. Macromol. Symp. 2004, 213, 7.
[7] Potapov, A. G.; Terskikh, V. V.; Zakharov, V. A.; Bukatov, G. D. J. Mol. Catal. A:Chem. 1999, 145, 147.
[8] Potapov, A. G.; Terskikh, V. V.; Bukatov, G. D.; Zakharov, V. A. J. Mol. Catal. A:Chem. 2000, 158, 457.
[9] Hu, J.; Han, B.; Shen, X. R.; Fu, Z. S.; Fan, Z. Q. Chin. J. Polym. Sci. 2013, 31, 583.
[10] Franceschini, F. C.; Tavares, T. T. D. R.; Greco, P. P.; Galland, G. B.; dos Santos, J. H.; Soares, J. B. J. Appl. Polym. Sci. 2005, 95, 1050.
[11] Rocha, T. C. J.; Coutinho, F. M. B.; Soares, B. G. Polym. Bull. 2009, 62, 1.
[12] Gao, H.; Liu, X.; Tang, Y.; Pan, J.; Wu, Q. Polym. Chem. 2011, 2, 1398.
[13] Huang, W. Q.; Yang, L.; Zhao, X.; Man, Y.; Li, B. Y.; Zhang, Y.; Yang, W. T. Chem. Ind. & Eng. Pro. 2011, 30, 1231(in Chinese). (黄文氢, 杨岭, 赵曦, 满毅, 李秉毅, 张颖, 杨万泰, 化工进展, 2011, 30, 1231.)
[14] Blaakmeer, E. S. M.; van Eck, E. R. H.; Kentgens, A. P. M. Phys. Chem. Chem. Phys. 2018, 20, 7974.
[15] Niu, Q. T.; Zhang, J. Y.; Peng, W.; Fan, Z. Q.; He, A. H. Mol. Catal. 2019, 471, 1.
[16] Richardson, W. S. J. Polym. Sci. 1954, 13, 325.
[17] Ferington, T. E.; Tobolsky, A. V. J. Polym. Sci. 1958, 31, 25.
[18] Dolgoplosk, B.; Belonovskaia, G. P.; Boldyreva, I. I.; Nelson, K. V.; Kropacheva, E. N.; Rosinoer, J. M.; Chernova, J. D. J. Polym. Sci. 1961, 53, 209.
[19] Kennedy, J. P.; Squires, R. G. Polymer 1965, 6, 579.
[20] Binder, J. L. J. Polym. Sci. Part A:Gen. Pap. 1963, 1, 37.
[21] Kössler, I.; Vodehnal, J.; Štolka, M. J. Polym. Sci. Part A:Gen. Pap. 1965, 3, 2081.
[22] Pétiaud, R.; Taärit, Y. B. J. Chem. Soc. 1980, 10, 1385.
[23] Peng, Y. X.; Deng, Y. G.; Liu, J. L.; Dai, H. S.; Cun, L. F. Polym. Mater. Sci. Eng. 1997, 13, 95(in Chinese). (彭宇行, 邓勇刚, 刘佳林, 戴汉松, 寸琳峰, 高分子材料科学与工程, 1997, 13, 95.)
[24] Gaylord, N. G.; Matyska, B.; Mach, K.; Vodehnal, J. J. Polym. Sci. Pol. Chem. 1966, 4, 2493.
[25] Gaylord, N. G.; Kössler, I.; Matyska, B.; Mach, K. J. Polym. Sci. Pol. Chem. 1968, 6, 125.
[26] Matyska, B.; Doležal, I.; Kössler, I. Collect. Czech. Chem. C 1971, 36, 2924.
[27] Uchida, Y.; Furuhata, K. I.; Ishiwata, H. Bull. Chem. Soc. Jpn. 1971, 44, 1118.
[28] Akutagawa, S.; Taketomi, T.; Otsuka, S. Chem. Lett. 1976, 5, 485.
[29] Shen, G. L. Journal of Liaoyang Petrochemical College 1996, 12, 1(in Chinese). (沈国良, 辽阳石油化专学报, 1996, 12, 1.)
[30] Yu, S. J. Speciality Petrochemicals 2000, (2), 20(in Chinese). (于士君, 精细石油化工, 2000, (2), 20.)
[31] Shen, G. L.; Tang, L. H. Speciality Petrochemicals 2004, (1), 17(in Chinese). (沈国良, 唐丽华, 精细石油化工, 2004, (1), 17.)
[32] Xia, S. W.; Xia, S. W.; Ma, S. X. Acta Polym. Sinica 1998, (3), 262(in Chinese). (夏树伟, 夏少武, 马世学, 高分子学报, 1998, (3), 262.)
文章导航

/