多孔聚合物在锂金属负极保护中的研究进展
收稿日期: 2020-10-09
网络出版日期: 2020-11-19
基金资助
国家自然科学基金(51702262); 国家自然科学基金(51972270); 国家自然科学基金(51872179); 国家自然科学基金(51672225); 陕西省自然科学基金重点项目(2020JZ-07); 陕西省重点研发计划(2019TSLGY07-03)
Recent Progress of Porous Polymers for Lithium Metal Anodes Protection
Received date: 2020-10-09
Online published: 2020-11-19
Supported by
National Natural Science Foundation of China(51702262); National Natural Science Foundation of China(51972270); National Natural Science Foundation of China(51872179); National Natural Science Foundation of China(51672225); Natural Science Foundation of Shaanxi Province(2020JZ-07); Key Research and Development Program of Shaanxi Province(2019TSLGY07-03)
锂金属负极具有极高的理论比容量和最低的还原电位, 因此锂金属电池被认为是最具潜力的高比能储能器件之一. 然而, 充放电过程中不受控制的枝晶生长、不稳定的界面反应与巨大的体积变化导致锂金属负极库伦效率低与循环稳定性差, 同时枝晶刺穿隔膜也会带来安全隐患, 这些问题极大地制约着锂金属电池的实际应用. 多孔聚合物由于比表面积大、密度低、孔结构与微化学环境易裁剪等特点, 能够有效促进锂离子传输和均匀沉积, 已逐渐成为“无枝晶”锂金属电池研究领域的“新宠”. 然而, 相关的研究依然处于起步阶段, 本综述从人工固体电解质界面膜、隔膜修饰层与锂负极结构设计三个方面对多孔聚合物在锂金属电池负极保护中的研究进行了介绍与评述.
庄容 , 许潇洒 , 曲昌镇 , 徐顺奇 , 于涛 , 王洪强 , 徐飞 . 多孔聚合物在锂金属负极保护中的研究进展[J]. 化学学报, 2021 , 79(4) : 378 -387 . DOI: 10.6023/A20100462
Lithium metal batteries (LMBs) are regarded as one of the most promising candidates for next-generation high-energy-density devices, due to the high theoretical specific capacity and low electrochemical potential of lithium metal anode. However, the uncontrollable growth of Li dendrite, unstable Li/electrolyte interface and infinite volume fluctuation during charge/discharge process give rise to low Coulombic efficiency, poor cycle stability and even serious safety hazard from internal short-circuit via dendrite penetration through separators. These multifaceted problems severely hinder the practical applications of LMBs. Featured by high specific surface area, low density, controllable pore structure, and flexible molecular design of pore surface/skeleton functionality, porous polymers have received growing attention in electrochemical energy storage, especially for lithium anode protection. The nanopores and tailored functionalities could allow for facilitated Li ion transport, while inhibiting anions and regulating the grain size and distribution of LiF. The large pores are conducive to accommodating lithium deposition and lowing of local current density. Consequently, porous polymers have become the “new favorite” in the field of “dendrite-free” LMBs recently, which show great potential for stabilizing Li metal anode. However, explorations in this field still remain in their infancy, and the objective of this review is to briefly summarize the research progress of porous polymers, especially crystalline covalent organic frameworks for lithium metal anodes protection, by means of constructing the artificial solid electrolyte interphase layer, coating separator with functional layers and designing metal anode structure.
Key words: lithium metal battery; Li dendrite; anode protection; porous polymer; pore structure
[1] | Tikekar, M.D.; Choudhury, S.; Tu, Z.; Archer, L.A. Nat. Energy. 2016, 1,1. |
[2] | Wang, M.Q.; Peng, Z.; Luo, W.W.; Ren, F.H.; Li, Z.D.; Zhang, Q.; He, H.Y.; Ouyang, C.Y.; Wang, D.Y. Adv. Energy Mater. 2019, 9,1802912. |
[3] | Guo, Y.P.; Li, H.Q.; Zhai, T.Y. Adv. Mater. 2017, 29,1700007. |
[4] | Qi, X.; Wang, C.; Nan, W.Z.; Hong, Q.H.; Peng, S.K.; Yan, S.J. J. Mater. Eng. 2020, 48,50. |
[4] | ( 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九, 材料工程, 2020, 48,50.) |
[5] | Zhai, P.; Liu, L.X.; Gu, X.K.; Wang, T.S.; Gong, Y.J. Adv. Energy Mater. 2020, 10,2001257. |
[6] | Liu, F.F.; Zhang, Z.W.; Ye, S.F.; Yao, Y.; Yu, Y. Acta Phys.-Chim. Sin. 2021, 37,2006021. |
[6] | ( 刘凡凡, 张志文, 叶淑芬, 姚雨, 余彦, 物理化学学报, 2021, 37,2006021.) |
[7] | Li, S.; Luo, Z.; Li, L.; Hu, J.G.; Zou, G.Q.; Hou, H.S.; Ji, X.B. Energy Storage Mater. 2020, 32,306. |
[8] | Chen, D.D.; Huang, S.; Zhong, L.; Wang, S.J.; Xiao, M.; Han, D.M.; Meng, Y.Z. Adv. Funct. Mater. 2020, 30,1907717. |
[9] | Xu, Y.; Zhou, Y.; Li, T.; Jiang, S.H.; Qian, X.; Yue, Q.; Kang, Y.J. Energy Storage Mater. 2020, 25,334. |
[10] | Gao, Y.; Yan, Z.F.; Gray, J.L.; He, X.; Wang, D.W.; Chen, T.H.; Huang, Q.Q.; Li, Y.C.; Wang, H.Y.; Kim, S.H.; Mallouk, T.E.; Wang, D.H. Nat. Mater. 2019, 18,384. |
[11] | Zhao, Z.D.; Chen, W.J.; Impeng, S.; Li, M.X.; Wang, R.; Liu, Y.C.; Zhang, L.; Dong, L.; Unruangsri, J.; Peng, C.X.; Wang, C.C.; Namuangruk, S.; Lee, S.Y.; Wang, Y.G.; Lu, H.B.; Guo, J. J. Mater. Chem. A 2020, 8,3459. |
[12] | Zhou, T.H.; Zhao, Y.; Choi, J.W.; Coskun, A. Angew. Chem., Int. Ed. 2019, 58,16795. |
[13] | Jiang, C.; Gu, Y.M.; Tang, M.; Chen, Y.; Wu, Y.C.; Ma, J.; Wang, C.L.; Hu, W.P. ACS Appl. Mater. Interfaces 2020, 12,10461. |
[14] | Xie, H.Y.; Hao, Q.; Jin, H.C.; Xie, S.; Sun, Z.W.; Ye, Y.D.; Zhang, C.H.; Wang, D.; Ji, H.X.; Wan, L.J. Sci. China: Chem. 2020, 63,1306. |
[15] | Li, G.X.; Liu, Z.; Huang, Q.Q.; Gao, Y.; Regula, M.; Wang, D.W.; Chen, L.Q.; Wang, D.H. Nat. Energy. 2018, 3,1076. |
[16] | Fan, L.; Zhuang, H.L.; Zhang, W.D.; Fu, Y.; Liao, Z.H.; Lu, Y.Y. Adv. Energy Mater. 2018, 8,1703360. |
[17] | Shi, H.D.; Yue, M.; Zhang, C.J.; Dong, Y.F.; Lu, P.F.; Zheng, S.H.; Huang, H.J.; Chen, J.; Wen, P.C.; Xu, Z.C.; Zheng, Q.; Li, X.F.; Yu, Y.; Wu, Z.S. ACS Nano 2020, 14,8678. |
[18] | Fu, C.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A.-W.; Viswanathan, V.; Helms, B.A. Nat. Mater. 2020, 19,758. |
[19] | Lee, Y.G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. Nat. Energy. 2020, 5,348. |
[20] | Das, S.; Heasman, P.; Ben, T.; Qiu, S.L. Chem. Rev. 2017, 117,1515. |
[21] | Zheng, B.N.; Lin, X.D.; Zhang, X.C.; Wu, D.C.; Matyjaszewski, K. Adv. Funct. Mater. 2019, 30,1907006. |
[22] | Sun, Q.; Dai, Z.F.; Meng, X.J.; Xiao, F.S. Chem. Soc. Rev. 2015, 44,6018. |
[23] | Wu, J.L.; Xu, F.; Li, S.M.; Ma, P.W.; Zhang, X.C.; Liu, Q.H.; Fu, R.W.; Wu, D.C. Adv. Mater. 2019, 31,1802922. |
[24] | Wu, D.C.; Xu, F.; Sun, B.; Fu, R.W.; He, H.K.; Matyjaszewski, K. Chem. Rev. 2012, 112,3959. |
[25] | Peng, Z.K.; Ding, H.M.; Chen, R.F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77,681. |
[25] | ( 彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77,681.) |
[26] | He, Q.; Zhang, C.; Li, X.; Wang, X.; Mou, P.; Jiang, J.X. Acta Chim. Sinica 2018, 76,202. |
[26] | ( 贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76,202.) |
[27] | Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O'Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Science 2005, 310,1166. |
[28] | Geng, K.; He, T.; Liu, R.Y.; Dalapati, S.; Tan, K.T. T.; Li, Z.P.; Tao, S.S.; Gong, Y.F.; Jiang, Q.H.; Jiang, D.L. Chem. Rev. 2020, 120,8814. |
[29] | Jiang, J.X.; Su, F.; Trewin, A.; Wood, C.D.; Campbell, N.L.; Niu, H.; Dickinson, C.; Ganin, A.Y.; Rosseinsky, M.J.; Khimyak, Y.Z. Angew. Chem., Int. Ed. 2007, 46,8574. |
[30] | Xu, Y.H.; Jin, S.B.; Xu, H.; Nagai, A.; Jiang, D.L. Chem. Soc. Rev. 2013, 42,8012. |
[31] | Ben, T.; Ren, H.; Ma, S.Q.; Cao, D.P.; Lan, J.H.; Jing, X.F.; Wang, W.C.; Xu, J.; Deng, F.; Simmons, J.M.; Qiu, S.L.; Zhu, G.S. Angew. Chem., Int. Ed. 2009, 121,9621. |
[32] | Tian, Y.Y.; Zhu, G.S. Chem. Rev. 2020, 120,8934. |
[33] | Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2008, 47,3450. |
[34] | Liu, M.Y.; Guo, L.P.; Jin, S.B.; Tan, B. J. Mater. Chem. A 2019, 7,5153. |
[35] | Xu, F.; Yang, S.H.; Jiang, G.S.; Ye, Q.; Wei, B.Q.; Wang, H.Q. ACS Appl. Mater. Interfaces 2017, 9,37731. |
[36] | Budd, P.M.; Ghanem, B.S.; Makhseed, S.; McKeown, N.B.; Msayib, K.J.; Tattershall, C.E. Chem. Commun. 2004,230. |
[37] | Comesaña-Gándara, B.; Chen, J.; Bezzu, C.G.; Carta, M.; Rose, I.; Ferrari, M.C.; Esposito, E.; Fuoco, A.; Jansen, J.C.; McKeown, N.B. Energy Environ. Sci. 2019, 12,2733. |
[38] | Wood, C.D.; Tan, B.; Trewin, A.; Niu, H.; Bradshaw, D.; Rosseinsky, M.J.; Khimyak, Y.Z.; Campbell, N.L.; Kirk, R.; Stöckel, E. Chem. Mater. 2007, 19,2034. |
[39] | Tan, L.X.; Tan, B. Chem. Soc. Rev. 2017, 46,3322. |
[40] | Rozyyev, V.; Thirion, D.; Ullah, R.; Lee, J.; Jung, M.; Oh, H.; Atilhan, M.; Yavuz, C.T. Nat. Energy. 2019, 4,604. |
[41] | Liang, R.R.; Jiang, S.Y.; Ru-Han, A.; Zhao, X. Chem. Soc. Rev. 2020, 49,3920. |
[42] | Rodríguez-San-Miguel, D.; Zamora, F. Chem. Soc. Rev. 2019, 48,4375. |
[43] | Sun, T.; Xie, J.; Guo, W.; Li, D.S.; Zhang, Q.C. Adv. Energy Mater. 2020, 10,1904199. |
[44] | Xu, F.; Yang, S.H.; Chen, X.; Liu, Q.H.; Li, H.J.; Wang, H.Q.; Wei, B.Q.; Jiang, D.L. Chem. Sci. 2019, 10,6001. |
[45] | Xu, F.; Xu, H.; Chen, X.; Wu, D.C.; Wu, Y.; Liu, H.; Gu, C.; Fu, R.W.; Jiang, D.L. Angew. Chem., Int. Ed. 2015, 127,6918. |
[46] | Wu, J.L.; Xu, F.; Li, S.M.; Ma, P.W.; Zhang, X.C.; Liu, Q.H.; Fu, R.W.; Wu, D.C. Adv. Mater. 2019, 31,1802922. |
[47] | Liang, J.G.; Luo, Z.; Yan, Y.; Yuan, B. Mater. Rep. 2018, 32,1779. |
[47] | ( 梁杰铬, 罗政, 闫钰, 袁斌, 材料导报, 2018, 32,1779.) |
[48] | Xu, Y.F.; Gao, L.N.; Shen, L.; Liu, Q.Q.; Zhu, Y.Y.; Liu, Q.; Li, L.S.; Kong, X.Q.; Lu, Y.F.; Wu, H.B. Matter 2020, 3,1685. |
[49] | Cui, C.Y.; Yang, C.Y.; Eidson, N.; Chen, J.; Han, F.D.; Chen, L.; Luo, C.; Wang, P.F.; Fan, X.L.; Wang, C.S. Adv Mater. 2020, 32,e1906427. |
[50] | Shi, H.D.; Qin, J.Q.; Huang, K.; Lu, P.F.; Zhang, C.F.; Dong, Y.F.; Ye, M.; Liu, Z.M.; Wu, Z.S. Angew. Chem., Int. Ed. 2020, 59,12147. |
/
〈 |
|
〉 |