综述

离子液体二维结构制备及其特性研究进展

  • 吕玉苗 ,
  • 陈伟 ,
  • 王艳磊 ,
  • 霍锋 ,
  • 董依慧 ,
  • 魏莉 ,
  • 何宏艳
展开
  • a 中国科学院过程工程研究所 离子液体清洁过程北京市重点实验室 绿色过程与工程重点实验室 北京 100190
    b 大连工业大学轻工与化学工程学院 大连 116034

吕玉苗, 女, 助理研究员, 主要从事离子液体表界面结构、性质及应用研究. 2017年获得中国科学院物理研究所和香港城市大学博士学位, 同年加入中国科学院过程工程研究所从事助研工作, 发表SCI论文11篇, 主持国家自然科学基金青年科学基金1项, 参与国家自然科学基金委重大项目1项.

陈伟, 男, 大连工业大学轻工与化学工程学院在读硕士研究生, 中国科学院过程工程研究所联合培养硕士, 研究方向为离子液体二维结构在固体表界面的结构及性质.

魏莉, 女, 副教授, 硕士生导师. 2004年获得大连理工大学应用化学专业博士学位. 主要从事以离子液体为基质的有机催化、生物基材料合成, 离子液体电池等研究. 主持辽宁省教育厅项目1项, 辽宁省科技厅项目1项, 参加国家“973”子课题项目1项, 国家自然科学基金项目1项, 教育部重点项目1项, 省级项目4项, 市级3项, 发表论文20余篇.

何宏艳, 女, 研究员, 博士生导师, 国家自然科学基金优秀青年基金获得者. 主要从事界面离子液体结构与功能、离子液体特殊氢键与反应性能、离子液体催化木质素/CO2转化等方向的研究工作. 相关研究成果在ChemSmallChem. Eng. Sci.Green Chem.PCCP等期刊发表SCI论文80余篇, 申请发明专利17项, 获授权6项. 主持国家自然科学基金项目、北京市基金和中科院基金等多项. 获侯德榜化工技术青年奖、中国化工学会离子液体专委会青年创新奖、中科院科技促进发展奖及中国石油和化学工业协会科学技术奖等多项. 2017年入选中科院青年创新促进会.

† These authors contributed equally to this work

收稿日期: 2020-10-15

  网络出版日期: 2020-11-24

基金资助

国家自然科学基金(21922813); 国家自然科学基金(21908221); 国家自然科学基金(21776278); 国家自然科学基金(21808220); 中国科学院青年创新促进会(2017066); 多相复杂系统国家重点实验室自主部署课题(MPCS-2019-A-08)

Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids

  • Yumiao Lu ,
  • Wei Chen ,
  • Yanlei Wang ,
  • Feng Huo ,
  • Yihui Dong ,
  • Li Wei ,
  • Hongyan He
Expand
  • a CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
E-mail: ; Tel.: 0086-010-82627080

Received date: 2020-10-15

  Online published: 2020-11-24

Supported by

National Natural Science Foundation of China(21922813); National Natural Science Foundation of China(21908221); National Natural Science Foundation of China(21776278); National Natural Science Foundation of China(21808220); Youth Innovation Promotion Association, CAS(2017066); State Key Laboratory of Multiphase Complex Systems(MPCS-2019-A-08)

摘要

由于阴阳离子间特殊的静电、氢键作用, 具有二维结构的离子液体呈现出独特的结构特征及热力学、动力学特性, 在化学化工和材料领域都有着巨大的应用前景, 已成为离子液体领域重要的研究方向之一. 本综述重点介绍了离子液体二维结构常用的制备方法, 包括自组装法、Langmuir-Blodgett法以及物理气相沉积法, 并总结了这些制备方法相应的优缺点. 随后归纳了离子液体二维结构的相变特征及在力学和电学方面的特性, 并综述了其在摩擦润滑领域的应用. 最后展望了离子液体二维结构的发展方向及应用前景.

本文引用格式

吕玉苗 , 陈伟 , 王艳磊 , 霍锋 , 董依慧 , 魏莉 , 何宏艳 . 离子液体二维结构制备及其特性研究进展[J]. 化学学报, 2021 , 79(4) : 443 -458 . DOI: 10.6023/A20100475

Abstract

As green alternatives to non-environmental reagents, ionic liquids (ILs) have brought about a revolution in green chemical engineering. Very recently, attention to interfacial ILs has arisen. As a new structural type of ionic liquid, the ionic liquid (IL) with two-dimensional structure is endowed with unique structural features, thermodynamic and dynamic characteristics due to its special electrostatic and hydrogen bonds. It shows excellent application prospects in the field of chemistry and materials and has become one of the important research directions in the field of ILs. The standard preparation methods of two-dimensional structure ILs, including self-assembly, Langmuir-Blodgett and physical vapor deposition (PVD) methods are introduced in this review. The advantages and disadvantages of each method are also summarized. Self-assembly is the easiest and most widely used method to prepare two-dimensional ILs and the obtained structure is stable at room temperature. Meanwhile, the two-dimensional structure can be regulated by choosing different polar solvents and solutions with different concentrations. Langmuir-Blodgett method is suitable for polyionic liquids and amphiphilic ILs, because it requires monolayer IL to be formed on the water surface. PVD is mainly for ILs with high stability in the heating process under vacuum conditions, through which precise regulation of two-dimensional ILs structure can be achieved at ion level. However, the structure is sensitive to temperature, and temperatures higher than 100 K will destroy it. Then we review the phase transition feature, mechanical and electrical characteristics of two-dimensional structure ILs, including the lubrication applications. The enhanced surface effect results in the liquid-solid transition of ILs and the tendency of solidification is stronger when approaching the solid surface. On one hand, the conductivity decreases drastically with decreasing the thickness of two-dimensional ILs structure due to solidification. On the other hand, the solidification contributes to better lubrication performance with stronger resistance to friction and wear. Finally, the future development and broad application of two-dimensional structure ILs are envisioned.

参考文献

[1]
Yin, C.; Wang, Z.K.; Liu, D.; Peng, Z.T.; Song, H.J.; Zhu, H.; Chen, Q.W.; Wu, K. Acta Chim. Sinica 2020, 78,695. (in Chinese)
[1]
( 尹岑, 王子宽, 刘丹, 彭展涛, 宋环君, 祝浩, 陈其伟, 吴凯, 化学学报, 2020, 78,695.)
[2]
Hu, Z.; Liu, Z.B.; Tian, J.G. Chinese J. Chem. 2020, 38,981.
[3]
Wang, Z.T.; Li, H.; Yan, S.C.; Fang, Q.R. Acta Chim. Sinica 2020, 78,63. (in Chinese)
[3]
( 王志涛, 李辉, 颜士臣, 方千荣, 化学学报, 2020, 78,63.)
[4]
Huang, W.; Li, Y.G. Chinese J. Chem. 2019, 37,1291.
[5]
Cao, L.Y.; Wang, T.T.; Wang, C. Chinese J. Chem. 2018, 36,754.
[6]
Zhang, D.D.; Yuan, Z.Z.; Zhang, G.Q.; Tian, N.; Liu, D.M.; Zhang, Y.Z. Acta Chim. Sinica 2018, 76,537. (in Chinese)
[6]
( 张丹丹, 袁振洲, 张国庆, 田楠, 刘丹敏, 张永哲, 化学学报, 2018, 76,537.)
[7]
Zhang, C.H.; Fu, L.; Zhang, Y.F.; Liu, Z.F. Acta Chim. Sinica 2013, 71,308. (in Chinese)
[7]
( 张朝华, 付磊, 张艳锋, 刘忠范, 化学学报, 2013, 71,308.)
[8]
Ji, J.P.; Song, X.F.; Liu, J.Z.; Yan, Z.; Huo, C.X.; Zhang, S.L.; Su, M.; Liao, L.; Wang, W.H.; Ni, Z.H. Nat. Commun. 2016, 7,1.
[9]
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H. Nature 2017, 546,270.
[10]
Jariwala, D.; Marks, T.J.; Hersam, M.C. Nat. Mater. 2017, 16,170.
[11]
Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G. Nat. Nanotechnol. 2018, 13,246.
[12]
Pârvulescu, V.I.; Hardacre, C. Chem. Rev. 2007, 107,2615.
[13]
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal. A: Gen. 2010, 373,1.
[14]
Maton, C.; De Vos, N.; Stevens, C.V. Chem. Soc. Rev. 2013, 42,5963.
[15]
Leng, M.H.; Chen, S.M.; Zhang, J.L.; Lang, H.Y.; Kang, Y.H.; Zhang, S.J. Acta Chim. Sinica 2015, 73,403. (in Chinese)
[15]
( 冷明浩, 陈仕谋, 张军玲, 郎海燕, 康艳红, 张锁江, 化学学报, 2015, 73,403.)
[16]
Liu, M.Y.; Che, J.N.; Wu, W.H.; Lu, Y.X.; Peng, C.J.; Liu, H.L.; Lu, H.; Yang, Q.; Wang, H.L. Acta Chim. Sinica 2015, 73,116. (in Chinese)
[16]
( 刘梦莹, 车佳宁, 吴蔚闳, 卢运祥, 彭昌军, 刘洪来, 卢浩, 杨强, 杨强, 汪华林, 化学学报, 2015, 73,116.)
[17]
Podgorsek, A.; Jacquemin, J.; Pádua, A.; Costa Gomes, M. Chem. Rev. 2016, 116,6075.
[18]
Zhang, S.J.; Wang, Y.L.; He, H.Y.; Huo, F.; Lu, Y.M.; Zhang, X.C.; Dong, K. Green Energy Environ. 2017, 2,329.
[19]
Wang, J.J. Green Energy Environ. 2020, 5,122.
[20]
Wang, Y.L.; Qian, C.; Huo, F.; Qin, J.Y.; He, H.Y. J. Mater. Chem. A 2020, 8,19908.
[21]
Wang, Y.L.; Qian, C.; Huo, F.; Xu, B.H.; He, H.Y.; Zhang, S.J. AIChE J. 2020.doi: 10.1002/aic.17060.
[22]
He, Y.Q.; Li, H.; Qu, C.Y.; Cao, W.; Ma, M. Green Chem. Eng. 2020. doi: 10.1016/j.gce.2020.10.006.
[23]
Yuan, X.Q.; Zhang, Y.Q.; Li, Z.Y.; Huo, F.; Dong, Y.H.; He, H.Y. Chin. J. Chem. 2020. doi: 10.1002/cjoc.202000414.
[24]
Zhang, H.H.; Zhu, M.Y.; Zhao, W.; Li, S.; Feng, G. Green Energy Environ. 2018, 3,120.
[25]
Souda, R. J. Phys. Chem. B 2009, 113,12973.
[26]
Uhl, B.; Buchner, F.; Alwast, D.; Wagner, N.; Behm, R.J. Beilstein J. Nanotechnol. 2013, 4,903.
[27]
Buchner, F.; Forster-Tonigold, K.; Bozorgchenani, M.; Gross, A.; Behm, R.J. r. J. Phys. Chem. Lett. 2016, 7,226.
[28]
Uhl, B.; Huang, H.; Alwast, D.; Buchner, F.; Behm, R.J. Phys. Chem. Chem. Phys. 2015, 17,23816.
[29]
Maruyama, S.; Prastiawan, I.B. H.; Toyabe, K.; Higuchi, Y.; Koganezawa, T.; Kubo, M.; Matsumoto, Y. ACS Nano 2018, 12,10509.
[30]
Wang, H.Z.; Lu, Q.M.; Ye, C.F.; Liu, W.M.; Cui, Z.J. Wear 2004, 256,44.
[31]
Funston, A.M.; Fadeeva, T.A.; Wishart, J.F.; Castner, E.W. J. Phys. Chem. B 2007, 111,4963.
[32]
Bhushan, B.; Palacio, M.; Kinzig, B. J. Colloid Interf. Sci. 2008, 317,275.
[33]
Palacio, M.; Bhushan, B. J. Vac. Sci. Technol. A 2009, 27,986.
[34]
Zhu, M.; Yan, J.; Mo, Y.F.; Bai, M.W. Tribol. Lett. 2008, 29,177.
[35]
Sweeney, J.; Hausen, F.; Hayes, R.; Webber, G.B.; Endres, F.; Rutland, M.W.; Bennewitz, R.; Atkin, R. Phys. Rev. Lett. 2012, 109,155502.
[36]
Liu, Y.D.; Zhang, Y.; Wu, G.Z.; Hu, J. J. Am. Chem. Soc. 2006, 128,7456.
[37]
Bovio, S.; Podesta, A.; Lenardi, C.; Milani, P. J. Phys. Chem. B 2009, 113,6600.
[38]
Galluzzi, M.; Bovio, S.; Milani, P.; Podestà, A. J. Phys. Chem. C 2018, 122,7934.
[39]
Lu, Y.M.; Chen, W.; Wang, Y.L.; Huo, F.; Zhang, L.; He, H.Y.; Zhang, S.J. Phys. Chem. Chem. Phys. 2020, 22,1820.
[40]
Wang, Z.; Priest, C. Langmuir 2013, 29,11344.
[41]
Beattie, D.A.; Espinosa-Marzal, R.M.; Ho, T.T.; Popescu, M.N.; Ralston, J.; Richard, C.l. J.; Sellapperumage, P.M.; Krasowska, M. J. Phys. Chem. C 2013, 117,23676.
[42]
Gong, X.; West, B.; Taylor, A.; Li, L. Ind. Eng. Chem. Res. 2016, 55,6391.
[43]
Mo, Y.F.; Huang, F.C.; Zhao, F. Surf. Interface Anal. 2011, 43,1006.
[44]
Gong, X.; Kozbial, A.; Rose, F.; Li, L. ACS Appl. Mater. Inter. 2015, 7,7078.
[45]
Zhang, F.C.; Sha, M.L.; Ren, X.P.; Wu, G.Z.; Hu, J.; Zhang, Y. Chin. Phys. Lett. 2010, 27,086101.
[46]
Zhao, W.J.; Zhu, M.; Mo, Y.F.; Bai, M.W. Colloid. Surface. A 2009, 332,78.
[47]
Pu, J.B.; Liu, X.F.; Wang, L.P.; Xue, Q.J. Surf. Interface Anal. 2011, 43,1332..
[48]
Bovio, S.; Podesta, A.; Milani, P.; Ballone, P.; Del Pópolo, M. J. Phys.: Condens. Matter 2009, 21,424118.
[49]
Nishida, J.; Breen, J.P.; Wu, B.; Fayer, M.D. ACS Cent. Sci. 2018, 4,1065.
[50]
Wu, B.; Breen, J.P.; Fayer, M.D. J. Phys. Chem. C 2020, 124,4179.
[51]
Zhao, W.J.; Mo, Y.F.; Pu, J.B.; Bai, M.W. Tribol. Int. 2009, 42,828.
[52]
Ko?hler, R.; Restolho, J.; Krastev, R.; Shimizu, K.; Canongia Lopes, J.N.; Saramago, B. J. Phys. Chem. Lett. 2011, 2,1551.
[53]
Bakshi, P.S.; Gusain, R.; Khatri, O.P. RSC Adv. 2016, 6,78296.
[54]
Lee, B.S.; Chi, Y.S.; Lee, J.K.; Choi, I.S.; Song, C.E.; Namgoong, S.K.; Lee, S.-g. J. Am. Chem. Soc. 2004, 126,480.
[55]
Branca, M.; Correia-Ledo, D.; Bolduc, O.R.; Ratel, M.; Schmitzer, A.R.; Masson, J.-F. Phys. Chem. Chem. Phys. 2011, 13,12015.
[56]
Pu, J.B.; Huang, D.M.; Wang, L.P.; Xue, Q.J. Colloid. Surface. A 2010, 372,155.
[57]
Pu, J.B.; Jiang, D.; Mo, Y.F.; Wang, L.P.; Xue, Q.J. Surf. Coat. Tech. 2011, 205,4855.
[58]
Zhao, W.J.; Wang, Y.; Wang, L.P.; Bai, M.W.; Xue, Q.J. Colloid. Surface. A 2010, 361,118.
[59]
Mo, Y.F.; Yu, B.; Zhao, W.J.; Bai, M.W. Appl. Surf. Sci. 2008, 255,2276.
[60]
Yu, B.; Zhou, F.; Mu, Z.G.; Liang, Y.M.; Liu, W.M. Tribol. Int. 2006, 39,879.
[61]
Gusain, R.; Kokufu, S.; Bakshi, P.S.; Utsunomiya, T.; Ichii, T.; Sugimura, H.; Khatri, O.P. Appl. Surf. Sci. 2016, 364,878.
[62]
Erwin, A.J.; Xu, W.N.; He, H.K.; Matyjaszewski, K.; Tsukruk, V.V. Langmuir 2017, 33,3187.
[63]
Lee, H.; Stryutsky, A.V.; Korolovych, V.F.; Mikan, E.; Shevchenko, V.V.; Tsukruk, V.V. Langmuir 2019, 35,11809.
[64]
Sieling, T.; Christoffers, J.; Brand, I. ACS Sustain. Chem. Eng. 2019, 7,11593.
[65]
Sieling, T.; Brand, I. ChemElectroChem 2020, 7,3168.
[66]
Eftaiha, A.; Qaroush, A.K.; Kayed, G.G.; Abdel Rahman, A.R. K.; Assaf, K.I.; Paige, M.F. ChemPhysChem 2020, 21,1858.
[67]
Earle, M.J.; Esperança, J.M.; Gilea, M.A.; Lopes, J.N. C.; Rebelo, L.P.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. Nature 2006, 439,831.
[68]
Armstrong, J.P.; Hurst, C.; Jones, R.G.; Licence, P.; Lovelock, K.R.; Satterley, C.J.; Villar-Garcia, I.J. Phys. Chem. Chem. Phys. 2007, 9,982.
[69]
Waldmann, T.; Huang, H.H.; Hoster, H.E.; Höfft, O.; Endres, F.; Behm, R.J. ChemPhysChem 2011, 12,2565.
[70]
Buchner, F.; Uhl, B.; Forster-Tonigold, K.; Bansmann, J.; Groß, A.; Behm, R.J. J. Chem. Phys. 2018, 148,193821.
[71]
Buchner, F.; Forster-Tonigold, K.; Uhl, B.; Alwast, D.; Wagner, N.; Farkhondeh, H.; Groß, A.; Behm, R.J. ACS Nano 2013, 7,7773.
[72]
Uhl, B.; Hekmatfar, M.; Buchner, F.; Behm, R.J. Phys. Chem. Chem. Phys. 2016, 18,6618.
[73]
Uhl, B.; Cremer, T.; Roos, M.; Maier, F.; Steinrück, H.-P.; Behm, R.J. Phys. Chem. Chem. Phys. 2013, 15,17295.
[74]
Uhl, B.; Buchner, F.; Gabler, S.; Bozorgchenani, M.; Behm, R.J. Chem. Commun. 2014, 50,8601.
[75]
Buchner, F.; Forster-Tonigold, K.; Bozorgchenani, M.; Gross, A.; Behm, R.J. J. Phys. Chem. Lett. 2016, 7,226.
[76]
Buchner, F.; Bozorgchenani, M.; Uhl, B.; Farkhondeh, H.; Bansmann, J.; Behm, R.J. J. Phys. Chem. C 2015, 119,16649.
[77]
Cremer, T.; Wibmer, L.; Calderón, S.K.; Deyko, A.; Maier, F.; Steinrück, H.-P. Phys. Chem. Chem. Phys. 2012, 14,5153.
[78]
Cremer, T.; Stark, M.; Deyko, A.; Steinru?ck, H.-P.; Maier, F. Langmuir 2011, 27,3662.
[79]
Lexow, M.; Talwar, T.; Heller, B.S.; May, B.; Bhuin, R.G.; Maier, F.; Steinrück, H.-P. Phys. Chem. Chem. Phys. 2018, 20,12929.
[80]
Souda, R. J. Phys. Chem. B 2008, 112,15349.
[81]
Cremer, T.; Killian, M.; Gottfried, J.M.; Paape, N.; Wasserscheid, P.; Maier, F.; Steinrück, H.P. ChemPhysChem 2008, 9,2185.
[82]
Foulston, R.; Gangopadhyay, S.; Chiutu, C.; Moriarty, P.; Jones, R.G. Phys. Chem. Chem. Phys. 2012, 14,6054.
[83]
Schernich, S.; Wagner, V.; Taccardi, N.; Wasserscheid, P.; Laurin, M.; Libuda, J. Langmuir 2014, 30,6846.
[84]
Rietzler, F.; May, B.; Steinrück, H.-P.; Maier, F. Phys. Chem. Chem. Phys. 2016, 18,25143.
[85]
Bauer, T.; Mehl, S.; Brummel, O.; Pohako-Esko, K.; Wasserscheid, P.; Libuda, J. J. Phys. Chem. C 2016, 120,4453.
[86]
Sobota, M.; Nikiforidis, I.; Hieringer, W.; Paape, N.; Happel, M.; Steinru?ck, H.-P.; Go?rling, A.; Wasserscheid, P.; Laurin, M.; Libuda, J. Langmuir 2010, 26,7199.
[87]
Schernich, S.; Laurin, M.; Lykhach, Y.; Steinru?ck, H.-P.; Tsud, N.; Ska?la, T.s.; Prince, K.C.; Taccardi, N.; Matolín, V.; Wasserscheid, P. J. Phys. Chem. Lett. 2013, 4,30.
[88]
Olschewski, M.; Gustus, R.; Ho?fft, O.; Lahiri, A.; Endres, F. J. Phys. Chem. C 2017, 121,2675.
[89]
Carstens, T.; Gustus, R.; Ho?fft, O.; Borisenko, N.; Endres, F.; Li, H.; Wood, R.J.; Page, A.J.; Atkin, R. J. Phys. Chem. C 2014, 118,10833.
[90]
Biedron, A.B.; Garfunkel, E.L.; Castner Jr, E.W.; Rangan, S. J. Chem. Phys. 2017, 146,054704.
[91]
Syres, K.L.; Jones, R.G. Langmuir 2015, 31,9799.
[92]
Lexow, M.; Heller, B.S.; Maier, F.; Steinrück, H.P. ChemPhysChem 2018, 19,2978.
[93]
Lexow, M.; Heller, B.S.; Partl, G.; Bhuin, R.G.; Maier, F.; Steinru?ck, H.-P. Langmuir 2018, 35,398.
[94]
Lahiri, A.; Carstens, T.; Atkin, R.; Borisenko, N.; Endres, F. J. Phys. Chem. C 2015, 119,16734.
[95]
Buchner, F.; Kim, J.; Adler, C.; Bozorgchenani, M.; Bansmann, J.; Behm, R.J. J. Phys. Chem. Lett. 2017, 8,5804.
[96]
Rietzler, F.; Nagengast, J.; Steinru?ck, H.-P.; Maier, F. J. Phys. Chem. C 2015, 119,28068.
[97]
Koel, B.E.; Sellidj, A.; Paffett, M. Phys. Rev. B 1992, 46,7846.
[98]
Rietzler, F.; Piermaier, M.; Deyko, A.; Steinru?ck, H.-P.; Maier, F. Langmuir 2014, 30,1063.
文章导航

/