双金属Ag-Ni-MOF-74的合成及低温CO催化还原NO性能研究
收稿日期: 2020-10-22
网络出版日期: 2020-12-05
基金资助
项目受国家自然科学基金面上项目(21677022)
Synthesis of Bimetallic Ag-Ni-MOF-74 Catalyst with Excellent CO-SCR Performance in Low Temperature Range
Received date: 2020-10-22
Online published: 2020-12-05
Supported by
National Natural Science Foundation of China(21677022)
采用后合成修饰法成功制备出一系列双金属Agx-Ni-MOF-74催化剂, 并应用于CO选择性催化还原NO (CO-SCR)反应. 研究结果发现, 相较于单金属Ni-MOF-74催化剂, 双金属Ag-Ni-MOF-74具有更加优良的低温CO催化还原NO能力, 其中Ag1-Ni-MOF-74催化剂在200~300 ℃的温度范围达到接近100% NO转化率. 利用X射线衍射分析(XRD)、傅氏转换红外线光谱分析(FT-IR)、场发射扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、氢气程序升温还原性能测试(H2-TPR)等技术对样品的结构和性能进行了探究, 发现Ag的加入有利于丰富催化剂活性位点和提高催化剂的比表面积, 并促进反应物的有效活化和传输. 此外, 基于原位红外光谱分析, 发现了CO-SCR反应过程遵循具有较高低温催化效率的Langmuir-Hinshelwood (L-H)机理.
关键词: 脱硝; 双金属有机骨架; Ag-Ni-MOF-74; 后合成修饰法; CO选择性催化还原NO (CO-SCR)
张雅祺 , 楚奇 , 石勇 , 高金索 , 熊巍 , 黄磊 , 丁越 . 双金属Ag-Ni-MOF-74的合成及低温CO催化还原NO性能研究[J]. 化学学报, 2021 , 79(3) : 361 -368 . DOI: 10.6023/A20100478
Selective catalytic reduction of NOx with CO technology (CO-SCR) is supposed to be a cost-effective and environmentally friendly technique for NOx abatement in the flue gas under CO-rich conditions. As a promising class of porous hybrid inorganic-organic materials, bimetallic metal-organic frameworks exhibit great physicochemical properties in catalysis area, whereas their application in low-temperature CO-SCR system are seldom reported. In this study, a series of bimetal organic-frameworks catalysts with different Ag contents were successfully prepared by a post-synthesis method and were assessed for NO reduction by CO. The typical experimental procedure for the synthesis of bimetallic Ag-Ni-MOF-74 catalysts is as follows: First, a light yellow Ni-MOF-74 sample was prepared by a hydrothermal method. Then 250 mg Ni-MOF-74, 1 mmol of NaBH4 and AgNO3 with different molar ratio (0.25, 0.5, 1 mmol) were added into 40 mL N,N-dimethylformamide (DMF) solution, and were stirred for 6 h. The mixtures were further moved into a Teflon-lined autoclave at 150 ℃ for 12 h. After washing with DMF and methanol, the obtained Agx-Ni-MOF-74 catalysts were dried at 60 ℃ under vacuum for 12 h. Totally, bimetallic Ag-Ni-MOF-74 catalysts exhibited a better low-temperature CO-SCR efficiency than monometallic Ni-MOF-74 catalysts. Especially, Ag1-Ni-MOF-74 achieved a nearly 100% NO conversion in the temperature range from 200 ℃ to 300 ℃. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature programmed reduction (H2-TPR) techniques were used to investigate the structure and properties of the samples. It was found that Ag addition not only enriched the form of more active sites, but also increased the specific surface area of the catalysts, which promote the activation and transfer of reactants. The synergistic effect between Ag and Ni species also contributed to enhancement of surface oxygen vacancies and accelerated the electron transfer in NO+CO reaction. By combining XPS and in situ FT-IR results, the mechanism of CO-SCR reaction over Ag-Ni-MOF-74 was proposed to follow Langmuir- Hinshelwood (L-H) mechanism, which exhibits a more readily low-temperature reaction rate and a lower reaction barrier than Eley-Rideal (E-R) mechanism.
Key words: denitration; bimetallic MOFs; Ag-Ni-MOF-74; post synthetic modification; CO-SCR
[1] | Tang, K.; Liu, W.; Li, J.; Guo, J.; Zhang, J.; Wang, S.; Niu, S.; Yang, Y. ACS Appl. Mater. Interfaces 2015, 7,26839. |
[2] | Cheng, X.; Zhang, X.; Su, D.; Wang, Z.; Chang, J.; Ma, C. Appl. Catal., B 2018, 239,485. |
[3] | Xiong, Y.; Yao, X.; Tang, C.; Zhang, L.; Cao, Y.; Deng, Y.; Gao, F.; Dong, L. Catal. Sci. Technol. 2014, 4,4416. |
[4] | Wang, L.; Cheng, X.; Wang, Z.; Ma, C.; Qin, Y. Appl. Catal., B 2017, 201,636. |
[5] | Dai, X.; Jiang, W.; Wang, W.; Weng, X.; Shang, Y.; Xue, Y.; Wu, Z. Chin. J. Catal. 2018, 39,728. |
[6] | Yi, Y.; Liu, H.; Chu, B.; Qin, Z.; Dong, L.; He, H.; Tang, C.; Fan, M.; Bin, L. Chem. Eng. J. 2019, 369,511. |
[7] | Wu, S.; Li, X.; Fang, X.; Sun, Y.; Sun, J.; Zhou, M.; Zang, S. Chin. J. Catal. 2016, 37,2018. (in Chinese) |
[7] | ( 吴爽, 李学兵, 方向晨, 孙媛媛, 孙京, 周明东, 臧树良, 催化学报, 2016, 37, 2018.) |
[8] | Liu, K.; Yu, Q.; Qin, Q.; Wang, C. Environ. Technol. 2018, 39,1878. |
[9] | Liu, T.; Yao, Y.; Wei, L.; Shi, Z.; Han, L.; Yuan, H.; Li, B.; Dong, L.; Wang, F.; Sun, C. J. Phys. Chem. C 2017, 121,12757. |
[10] | Li, G.; Zhao, S.; Zhang, Y.; Tang, Z. Adv. Mater. 2018, 30,1800702. |
[11] | Yang, Q.; Xu, Q.; Jiang, H.-L. Chem. Soc. Rev. 2017, 46,4774. |
[12] | Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75,841. (in Chinese) |
[12] | ( 张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75,841.) |
[13] | Zhu, L.; Liu, X.-Q.; Jiang, H.-L.; Sun, L.-B. Chem. Rev. 2017, 117,8129. |
[14] | Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75,339. (in Chinese) |
[14] | ( 杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75,339.) |
[15] | Wu, Q.; Zhang, C.; Sun, K.; Jang, H. Acta Chim. Sinica 2020, 78,688. (in Chinese) |
[15] | ( 吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78,688.) |
[16] | Fan, Z.; Shi, J.-W.; Gao, C.; Gao, G.; Wang, B.; Niu, C. ACS Appl. Mater. Interfaces 2017, 9,16117. |
[17] | Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77,758. (in Chinese) |
[17] | ( 武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77,758.) |
[18] | You, B.; Jiang, N.; Sheng, M.; Drisdell, W.; Yano, J.; Sun, Y. ACS Catal. 2015, 5,7068. |
[19] | Ensafi, A.-A.; Moosavifard, S.-E.; Rezaei, B.; Kaverlavani, S. J. Mater. Chem. A 2018, 6,10497. |
[20] | Ge, D.; Qu, G.; Li, X.; Geng, K.; Cao, X.; Gu, H. New J. Chem. 2016, 40,5531. |
[21] | Zou, Z.; Wang, T.; Zhao, X.; Jiang, W.; Pan, H.; Gao, D.; Xu, C. ACS Catal. 2019, 9,7356. |
[22] | Li, H.; Liang, M.; Sun, W.; Wang, Y. Adv. Funct. Mater. 2016, 26,1098. |
[23] | Wang, M.-Q.; Ye, C.; Bao, S.-J.; Zhang, Y.; Xu, M.-W.; Li, Z. Chem. Commun. 2016, 52,12442. |
[24] | Yuan, K.; Song, T.; Wang, D.; Zou, Y.; Zhang, X.; Tang, Z.; Hu, W. Nanoscale 2018, 10,1591. |
[25] | Jiao, Y.; Chen, G.; Chen, D.; Pei, J.; Hu, Y. J. Mater. Chem. A 2017, 5,23744. |
[26] | Sun, Z.; Li, G.; Zhang, Y.; Liu, H.; Gao, X. Catal. Commun. 2015, 59,92. |
[27] | Liu, J.; Strachan, D.-M.; Thallapally, P.-K. Chem. Commun. 2014, 50,466. |
[28] | Keskin, A.; Ya?ar, A.; Candemir, O.-C.; ?zarslan, H. Fuel 2020, 273,117785. |
[29] | Ya?ar, A.; Keskin, A.; Keskin, Z.; ?zarslan, H.; Kaltar, S. Mater. Res. Express. 2019, 6,095523. |
[30] | Zhang, X.; Su, Y.; Cheng, J.; Lin, R.; Wen, N.; Deng, W.; Zhou, H. J. Fuel Chem. Technol. (Beijing, China) 2019, 47,1368. (in Chinese) |
[30] | ( 张显威, 苏亚欣, 程江浩, 林睿, 温妮妮, 邓文义, 周皞, 燃料化学学报, 2019, 47, 1368.). |
[31] | Calleja, G.; Sanz, R.; Orcajo, G.; Briones, D.; Leo, P.; Martínez, F. Catal. Today 2014, 227,130. |
[32] | Pliekhov, O.; Pliekhova, O.; ?tangar, U.-L.; Logar, N.-Z. Catal. Commun. 2018, 110,88. |
[33] | Du, X.; Li, Y.; Yin, H.; Xiang, Q. Acta Phys.-Chim. Sin. 2018, 34,414. (in Chinese) |
[33] | ( 杜新华, 李阳, 殷辉, 向全军, 物理化学学报, 2018, 34,414.) |
[34] | Sun, X.; Shi, Y.; Zhang, W.; Li, C.; Zhao, Q.; Gao, J.; Li, X. Catal. Commun. 2018, 114,104. |
[35] | Zhang, X.; Cheng, X.; Ma, C.; Wang, Z. Catal. Sci. Technol. 2018, 8,3336. |
[36] | Gao, X.; Jiang, Y.; Zhong, Y.; Luo, Z.; Cen, K. J. Hazard. Mater. 2010, 174,734. |
[37] | Sánchez-López, P.; Kotolevich, Y.; Miridonov, S.; Chávez-Rivas, F.; Fuentes, S.; Petranovskii, V. Catalysts 2019, 9,58. |
[38] | Yi, Y.; Zhang, P.; Qin, Z.; Yu, C.; Li, W.; Qin, Q.; Li, B.; Fan, M.; Liang, X.; Dong, L. RSC Adv. 2018, 8,7110. |
[39] | Stoyanova, D.; Georgieva, P.; Kasabova, N. React. Kinet., Mech. Catal. 2013, 108,391. |
[40] | Chen, F.; Liang, W.; Shi, X.; Qin, X.; Zhang, Y. Acta Mater. Compositae Sin. 2021, 38, in Chinese) |
[40] | ( 陈凤华, 梁娓娓, 石向东, 秦霄云, 张永辉, 复合材料学报, 2021, 38, DOI: 10.13801/j.cnki.fhclxb.20200928.004) |
[41] | Boningari, T.; Pavani, S.-M.; Ettireddy, P.-R.; Chuang, S.; Smirniotis, P.-G. Mol. Catal. 2018, 451,33. |
[42] | Shrivastav, V.; Sundriyal, S.; Goel, P.; Kaur, H.; Tuteja, S.; Vikrant, K.; Kim, K.-H.; Tiwari, U.; Deep, A. Coord. Chem. Rev. 2019, 393,48. |
[43] | Jiang, H.; Zhou, J.; Wang, C.; Li, Y.; Chen, Y.; Zhang, M. Ind. Eng. Chem. Res. 2017, 56,3542. |
[44] | Liu, L.; Liu, B.; Dong, L.; Zhu, J.; Wan, H.; Sun, K.; Zhao, B.; Zhu, H.; Dong, L.; Chen, Y. Appl. Catal. B 2009, 90,578. |
[45] | Yan, L.; Ji, Y.; Wang, P.; Feng, C.; Han, L.; Li, H.; Yan, T.; Shi, L.; Zhang, D. Environ. Sci. Technol. 2020, 54,9132. |
[46] | Wang, P.; Yan, L.; Gu, Y.; Kuboon, S.; Li, H.; Yan, T.; Shi, L.; Zhang, D. Environ. Sci. Technol. 2020, 54,6396. |
[47] | Gholami, Z.; Luo, G. Ind. Eng. Chem. Res. 2018, 57,8871. |
[48] | Chen, Y.-Z.; Zhang, R.; Jiao, L.; Jiang, H.-L. Coord. Chem. Rev. 2018, 362,1. |
[49] | Zhang, L.; Yao, X.; Lu, Y.; Sun, C.; Tang, C.; Gao, F.; Dong, L. J. Colloid Interface Sci. 2018, 509,334. |
[50] | Liu, K.; Yu, Q.; Liu, J.; Wang, K.; Han, Z.; Xuan, Y.; Qin, Q. New J. Chem. 2017, 41,13993. |
[51] | Wang, Y.; Zhu, A.; Zhang, Y.; Au, C.; Yang, X.; Shi, C. Appl. Catal., B 2008, 81,141. |
[52] | Qin, Y.-H.; Huang, L.; Zheng, J.-X.; Ren, Q. Inorg. Chem. Commun. 2016, 72,78. |
/
〈 |
|
〉 |