金属有机骨架及其复合材料基于筛分复合效应的C2分离的研究进展
收稿日期: 2020-10-27
网络出版日期: 2020-12-11
基金资助
国家自然科学基金(51574044); 国家自然科学基金(51804045); 江苏省重点研发计划(产业前瞻与共性关键技术)(BE2018065)
Research Progress in Metal-Organic Framework and Its Composites for Separation of C2 Based on Sieving Multiple Effects
Received date: 2020-10-27
Online published: 2020-12-11
Supported by
National Natural Science Foundation of China(51574044); National Natural Science Foundation of China(51804045); and the Key Research and Development Program of Jiangsu Province (Industry Foresight and Common Key Technology)(BE2018065)
精细化分离是石油化工生产的关键技术及研究热点之一, 其中C2 (C2H2/C2H4和C2H4/C2H6)的高效精细分离更是现代化工过程中高质量生产的难点和新挑战. 传统的热驱动分离过程(如精馏分离和选择性催化加氢分离)存在能耗高、经济效益低的缺陷, 而采用非热驱动分离过程(如吸附分离和膜分离)可大幅度节能降耗. 在众多吸附分离材料中, 金属有机骨架(MOF)材料拥有庞大的组分/结构单元库, 其组成和孔结构的可控、可调特性为C2的精细化高效分离带来了新的机遇. 以此为导向, 整理并归纳了近年来MOF+材料(MOF及其复合材料)的晶体和孔道参数, 分析其在高效分离C2方面的科学研究成果, 针对MOF+材料的设计、可控制备、孔径调控机制等关键科学问题, 提出了未来MOF+材料的研究趋势.
关键词: 金属有机骨架材料; 复合材料; 孔径; C2H2/C2H4分离; C2H4/C2H6分离; 选择性
李旭飞 , 闫保有 , 黄维秋 , 浮历沛 , 孙宪航 , 吕爱华 . 金属有机骨架及其复合材料基于筛分复合效应的C2分离的研究进展[J]. 化学学报, 2021 , 79(4) : 459 -471 . DOI: 10.6023/A20100494
Fine separation of mixture is the primary importance technology and hot topic in the petrochemical industry. In particular, high-efficiency separation of C2 (C2H2/C2H4 and C2H4/C2H6) is a difficult issue and challenge of the high-quality production in modern chemical process. Traditional heat-driven separation processes (e.g., fine distillation separation and selective catalytic hydrogenation separation) have the shortages of high energy consumption and low economic benefits. On the contrary, the processes with non-thermal driven separations (e.g., adsorptive and membrane-based separations) can greatly overcome these weaknesses. Among these adsorptive separation materials, metal-organic framework (MOF) materials own a huge various library of components/structure units. Their characters of controllable pore structures and adjustable compositions will bring about new opportunities for the high-efficiency refined separations. In this context, the crystals and pore parameters of MOF+ (MOF and its composites) materials in recent years were sorted out and summarized, the researches in the high-efficiency separation of MOF+ materials for C2 were analyzed, and the key issues of the design, controllable preparation, and pore size control mechanism for MOF+ materials were focused on. In addition, the future research trend of MOF+ materials were also put forward.
[1] | Zhang, X.; Li, L.B.; Wang, J.X.; Wen, H.M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z.N.; Li, B.; Qian, G.D.; Chen, B.L. J. Am. Chem. Soc. 2020, 142,633. |
[2] | Li, L.B.; Lin, R.B.; Krishna, R.; Li, H.; Xiang, S.C.; Wu, H.; Li, J.P.; Zhou, W.; Chen, B.L. Science 2018, 362,443. |
[3] | Ding, Q.; Zhang, Z.Q.; Yu, C.; Zhang, P.X.; Wang, J.; Cui, X.L.; He, C.H.; Deng, S.G.; Xing, H.B. Sci. Adv. 2020, 6,4322. |
[4] | Liu, P.-X.; He, C.-H.; Li, L.-B.; Li, J.-P. CIESC J. 2020, 71,4211. (in Chinese) |
[4] | ( 刘普旭, 贺朝辉, 李立博, 李晋平, 化工学报, 2020, 71,4211.) |
[5] | Zhao, W.-M. Chem. Ind. 2020, 38,10. (in Chinese) |
[5] | ( 赵文明, 化学工业, 2020, 38,10.) |
[6] | Li, Z.-Y.; Wang, H.-Q.; Huang, G.-S.; Ren, W.-P.; Zhang, B.; Wei, S.-X. Chem. Ind. Eng.Pro. 2017, 36,767. (in Chinese) |
[6] | ( 李振宇, 王红秋, 黄格省, 任文坡, 张博, 魏寿祥, 化工进展, 2017, 36,767.) |
[7] | Liao, P.Q.; Zhang, W.X.; Zhang, J.P.; Chen, X.M. Nat. Commun. 2015, 6,8697. |
[8] | Yang, S.H.; Ramirez-Cuesta, A.J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S.K.; Campbell, S.I.; Tang, C.C.; Schroder, M. Nat. Chem. 2015, 7,121. |
[9] | Sholl, D.S.; Lively, R.P. Nature 2016, 532,435. |
[10] | Wang, X.-Q.; Chang, Z.-Y.; Li, L.-B.; Yang, J.-F.; Li, J.-P. Chem. Ind. Eng.Pro. 2017, 39,2218. (in Chinese) |
[10] | ( 王小青, 常则宇, 李立博, 杨江峰, 李晋平, 化工进展, 2020, 39,2218.) |
[11] | Lian, J.H.; Chai, Y.C.; Qi, Y.; Guo, X.Y.; Guan, N.J.; Li, L.D.; Zhang, F.X. Chinese J. Catal. 2020, 41,598. |
[12] | Khan, N.A.; Hasan, Z.; Jhung, S.H. Chem. A Eur. J. 2014, 20,338. |
[13] | Ren, T.; Patel, M.; Blok, K. Energy 2006, 31,425. |
[14] | Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Science 2012, 335,1606. |
[15] | Zhang, Z.Q.; Peh, S.B.; Wang, Y.X.; Kang, C.J.; Fan, W.D.; Zhao, D. Angew. Chem. Int. Ed. 2020, 59,18927. |
[16] | Wang, Y.X.; Peh, S.B.; Zhao, D. Small 2019, 15,1900058. |
[17] | Li, X.Y.; Li, Y.Z.; Ma, L.N.; Hou, L.; He, C.Z.; Wang, Y.Y.; Zhu, Z.H. J. Mater. Chem. A 2020, 8,5227. |
[18] | Lin, J.Y. S. Science 2016, 353,121. |
[19] | Li, J.R.; Sculley, J.; Zhou, H.C. Chem. Rev. 2012, 112,869. |
[20] | Yang, L.F.; Qian, S.H.; Wang, X.B.; Cui, X.L.; Chen, B.L.; Xing, H.B. Chem. Soc. Rev. 2020, 49,5359. |
[21] | Huang, W.Q.; Xu, J.X.; Tang, B.; Wang, H.N.; Tan, X.B.; Lv, A.H. Adsorpt. Sci. Technol. 2018, 36,888. |
[22] | Wang, H.N.; Tang, M.; Zhang, K.; Cai, D.F; Huang, W.Q.; Chen, R.Y.; Yu, C.Z. J. Hazard. Mater. 2014, 268,115. |
[23] | Huang, W.Q. Fundamental theory of oil vapour recovery and its application, China Petrochemical Press, Beijing, 2011, pp.244~245. (in Chinese) |
[23] | ( 黄维秋, 油气回收基础理论及其应用, 中国石化出版社, 北京, 2011, pp.244~245.) |
[24] | Bian, Q.-M.; Xin, M.-D.; Zou, H.; Xu, G.-T. Acta Petrol. Sin. (Petro. Proc. Sec.) 2020, 36,866. (in Chinese) |
[24] | ( 边青敏, 忻睦迪, 邹亢, 徐广通, 石油学报(石油加工), 2020, 36,866.) |
[25] | Li, H.L.; Eddaoudi, M.M.; O'keeffe, M.; Yaghi, O.M. Nature 1999, 402,276. |
[26] | Li, H.; Li, L.B.; Lin, R.B.; Zhou, W.; Zhang, Z.J.; Xiang, S.C.; Chen, B.L. EnergyChem 2019, 1,100006. |
[27] | Zhao, W.P.; Huang, W.Q.; Li, M.L.; Huang, Z.L. Nano 2019, 14,1950100. |
[28] | Li, X.-F.; Huang, W.-Q.; Tang, B.; Yu, H.-G.; Huang, S.-L.; Zhao, W.-P. New Chem. Mater. 2020, 48,10. (in Chinese) |
[28] | ( 李旭飞, 黄维秋, 唐波, 余浩刚, 黄顺林, 赵文蒲, 化工新型材料, 2020, 48,10.) |
[29] | Li, X.F.; Tang, B.; Huang, W.Q.; Yu, H.G. Z. Anorg. Allg. Chem. 2019, 645,73. |
[30] | Férey, F.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. Angew. Chem. Int. Ed. 2004, 43,6296. |
[31] | Park, K.S.; Ni, Z.; Cote, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O'keeffe, M.; Yaghi, O.M. PNAS 2006, 103,10186. |
[32] | Bao, Z.B.; Chang, G.G.; Xing, H.B.; Krishna, R.; Ren, Q.L.; Chen, B.L. Energy Environ. Sci. 2016, 9,3612. |
[33] | Huang, G.; Chen, Y.-Z.; Jiang, H.-L. Acta Chim. Sinica 2016, 74,113. (in Chinese) |
[33] | ( 黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74,113.) |
[34] | Zhou, D.D.; Zhang, X.W.; Mo, Z.W.; Xu, Y.Z.; Tian, X.Y.; Li, Y.; Chen, X.M.; Zhang, J.P. EnergyChem 2019, 1,100016. |
[35] | Li, D.D.; Xu, H.Q.; Jiao, L.; Jiang, H.L. EnergyChem 2019, 1,100005. |
[36] | Li, X.R.; Yang, X.C.; Xue, H.G.; Pang, H.; Xu, Q. EnergyChem 2020, 2,100027. |
[37] | Guo, Z.-B.; Zhang, Y.-Y.; Feng, X. Acta Chim. Sinica 2020, 78,397. (in Chinese) |
[37] | ( 郭振彬, 张媛媛, 冯霄, 化学学报, 2020, 78,397.) |
[38] | Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Science 2017, 356,1138. |
[39] | Gu, K.L. J. Chem. Indus. For. Prod. 1999, 4,37. (in Chinese) |
[39] | ( 古可隆, 林产化工通讯, 1999, 4,37.) |
[40] | Liu, Z.-L.; Li, W.; Liu, H.; Zhuang, X.-D.; Li, S. Acta Chim. Sinica 2019, 77,323. (in Chinese) |
[40] | ( 刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77,323.) |
[41] | Cai, C.-Z.; Li, L.-F.; Deng, X.-M.; Li, S.-H.; Liang, H.; Qiao, Z.-W. Acta Chim. Sinica 2020, 78,427. (in Chinese) |
[41] | ( 蔡铖智, 李丽风, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78,427.) |
[42] | Yang, W.-Y.; Liang, H.; Qiao, Z.-W. Acta Chim. Sinica 2018, 76,785. (in Chinese) |
[42] | ( 杨文远, 梁红, 乔智威, 化学学报, 2018, 76,785.) |
[43] | Bian, L.; Li, W.; Wei, Z.-Z.; Liu, X.-W.; Li, S. Acta Chim. Sinica 2020, 78,147. (in Chinese) |
[43] | ( 卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2020, 78,147.) |
[44] | Xu, H.; Tong, M.-M.; Wu, D.; Xiao, G.; Yang, Q.-Y.; Liu, D.-H.; Zhong, C.-L. Acta Phys.-Chim. Sin. 2015, 31,41. (in Chinese) |
[44] | ( 许红, 童敏曼, 吴栋, 肖刚, 阳庆元, 刘大欢, 仲崇立, 物理化学学报, 2015, 31,41.) |
[45] | Xiang, S.C.; Zhang, Z.J.; Zhao, C.G.; Hong, K.L.; Zhao, X.B.; Ding, D.R.; Xie, M.H.; Wu, C.D.; Das, M.C.; Gill, R.; Thomas, K.M.; Chen, B.L. Nat. Commun. 2011, 2,204. |
[46] | Hazra, A.; Jana, S.; Bonakala, S.; Balasubramanian, S.; Maji, T.K. Chem. Commun. 2017, 53,4907. |
[47] | Hu, T.L.; Wang, H.L.; Li, B.; Krishna, R.; Wu, H.; Zhou, W.; Zhao, Y.F.; Han, Y.; Wang, X.; Zhu, W.D.; Yao, Z.Z.; Xiang, S.C.; Chen, B.L. Nat. Commun. 2015, 6,7328. |
[48] | Zhang, Y.B.; Hu, J.B.; Krishna, R.; Wang, L.Y.; Yang, L.F.; Cui, X.L.; Duttwyler, S.; Xing, H.B. Angew. Chem. Int. Ed. 2020, 59,17664. |
[49] | Suo, X.; Cui, X.L.; Yang, L.F.; Xu, N.; Huang, Y.Q.; He, Y.; Dai, S.; Xing, H.B. Adv. Mater. 2020, 32,1907601. |
[50] | Cui, X.L.; Chen, K.J.; Xing, H.B.; Yang, Q.W.; Krishna, R.; Bao, Z.B.; Wu, H.; Zhou, W.; Dong, X.L.; Han, Y.; Li, B.; Ren, Q.L.; Zaworotko, M.J.; Chen, B.L. Science 2016, 353,141. |
[51] | Li, H.; Li, L.B.; Lin, R.B.; Ramirez, G.; Zhou, W.; Krishna, R.; Zhang, Z.J.; Xiang, S.C.; Chen, B.L. ACS Sustain. Chem. Eng. 2019, 7,4897. |
[52] | Li, B.; Cui, X.L.; O'nolan, D.; Wen, H.M.; Jiang, M.D.; Krishna, R.; Wu, H.; Lin, R.B.; Chen, Y.S.; Yuan, D.Q.; Xing, H.B.; Zhou, W.; Ren, Q.L.; Qian, G.D.; Zaworotko, M.J.; Chen, B.L. Adv. Mater. 2017, 29,1704210. |
[53] | Zhang, Z.Q.; Cui, X.L.; Yang, L.F.; Cui, J.Y.; Bao, Z.B.; Yang, Q.W.; Xing, H.B. Ind. Eng. Chem. Res. 2018, 57,7266. |
[54] | Thompson, J.A.; Blad, C.R.; Brunelli, N.A.; Lydon, M.E.; Jones, C.W.; Nair, S. Chem. Mater. 2012, 24,1930. |
[55] | Tu, B.B.; Diestel, L.; Shi, Z.L.; Bandara, W. R. L.N.; Chen, Y.; Lin, W.M.; Zhang, Y.B.; Telfer, S.G.; Li, Q.W. Angew. Chem. Int. Ed. 2019, 58,5348. |
[56] | Kitagawa, S.; Kitaura, R.; Noro, S.I. Angew. Chem. Int. Ed. 2004, 43,2334. |
[57] | Zhang, J.P.; Zhou, H.L.; Zhou, D.D.; Liao, P.Q.; Chen, X.M. Nat. Sci. Rev. 2018, 5,907. |
[58] | Nijem, N.; Wu, H.H.; Canepa, P.; Marti, A.; Balkus, K.J.; Thonhauser, T.; Li, J.; Chabal, Y.J. J. Am. Chem. Soc. 2012, 134,15201. |
[59] | Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R.A. Chem. Soc. Rev. 2014, 43,6062. |
[60] | Li, L.B.; Krishna, R.; Wang, Y.; Wang, X.B.; Yang, J.F.; Li, J.P. Eur. J. Inorg. Chem. 2016, 27,4457. |
[61] | Dong, Q.B.; Zhang, X.; Liu, S.; Lin, R.B.; Guo, Y.N.; Ma, Y.S.; Yonezu, A.; Krishna, R.; Liu, G.P.; Duan, J.G.; Matsuda, R.; Jin, W.Q.; Chen, B.L. Angew. Chem. Int. Ed. 2020, 59,22756. |
[62] | Lin, R.B.; Li, L.; Wu, H.; Arman, H.; Li, B.; Lin, R.G.; Zhou, W.; Chen, B.L. J. Am. Chem. Soc. 2017, 139,8022. |
[63] | Wang, J.; Zhang, Y.; Zhang, P.X.; Hu, J.B.; Lin, R.B.; Deng, Q.; Zeng, Z.L.; Xing, H.B.; Deng, S.G.; Chen, B.L. J. Am. Chem. Soc. 2020, 142,9744. |
[64] | Wang, Y.; Jia, X.X.; Yang, H.J.; Wang, Y.X.; Chen, X.T.; Hong, A.N.; Li, J.P.; Bu, X.H.; Feng, P.Y. Angew. Chem. Int. Ed. 2020, 59,19027. |
[65] | Yuan, Y.; Wang, M.; Zhou, Y.-Q.; Wang, Z.; Wang, J.-X. CIESC J. 2020, 71,429. (in Chinese) |
[65] | ( 原野, 王明, 周云琪, 王志, 王纪孝, 化工学报, 2020, 71,429.) |
[66] | Tian, P.; Wei, Y.X.; Ye, M.; Liu, Z.M. ACS Catal. 2015, 5,1922. |
[67] | Liao, P.Q.; Zhu, A.X.; Zhang, W.X.; Zhang, J.P.; Chen, X.M. Nat. Commun. 2015, 6,6350. |
[68] | Bao, Z.B.; Wang, J.W.; Zhang, Z.G.; Xing, H.B.; Yang, Q.W.; Yang, Y.W.; Wu, H.; Krishna, R.; Zhou, W.; Chen, B.L.; Ren, Q.L. Angew. Chem. Int. Ed. 2018, 57,16020. |
[69] | Lin, R.B.; Li, L.B.; Zhou, H.L.; Wu, H.; He, C.H.; Li, S.; Krishna, R.; Li, J.P.; Zhou, W.; Chen, B.L. Nat. Mater. 2018, 17,1128. |
[70] | Chen, Y.; Du, Y.-D.; Wang, Y.; Liu, P.-X.; Li, L.-B.; Li, J.-P. Acta Chim. Sinica 2020, 78,534. (in Chinese) |
[70] | ( 陈杨, 杜亚丹, 王勇, 刘普旭, 李立博, 李晋平, 化学学报, 2020, 78,534.) |
[71] | Qazvini, O.T.; Babarao, R.; Shi, Z.L.; Zhang, Y.B.; Telfer, S.G. J. Am. Chem. Soc. 2019, 141,5014. |
[72] | Zeng, H.; Xie, X.J.; Xie, M.; Huang, Y.L.; Luo, D.; Wang, T.; Zhao, Y.F.; Lu, W.G.; Li, D. J. Am. Chem. Soc. 2019, 141,20390. |
[73] | Yang, S.H.; Ramirez-Cuesta, A.J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S.K.; Campbell, S.I.; Tang, C.C.; Schröder, M. Nat. Chem. 2015, 7,121. |
[74] | Lin, R.B.; Xiang, S.C.; Zhou, W.; Chen, B.L. Chem 2020, 6,337. |
[75] | Shi, Y.S.; Liang, B.; Lin, R.B.; Zhang, C.; Chen, B.L. Trends Chem. 2020, 2,254. |
[76] | Kitao, T.; Zhang, Y.Y.; Kitagawa, S.; Wang, B.; Uemura, T. Chem. Soc. Rev. 2017, 46,3108. |
[77] | Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O'keeffe, M.; Yaghi, O.M. Acc. Chem. Res. 2010, 43,58. |
[78] | Bux, H.; Chmelik, C.; Krishna, R.; Caro, J. J. Membr. Sci. 2011, 369,284. |
[79] | Morris, W.; Doonan, C.J.; Furukawa, H.; Banerjee, R.; Yaghi, O.M. J. Am. Chem. Soc. 2008, 130,12626. |
[80] | Wang, B.; Cote, A.P.; Furukawa, H.; O'keeffe, M.; Yaghi, O.M. Nature 2008, 453,207. |
[81] | Qian, S.H.; Xia, L.; Yang, L.F.; Wang, X.B.; Suo, X.; Cui, X.L.; Xing, H.B. J. Membr. Sci. 2020, 611,118329. |
[82] | Chen, K.J.; Madden, D.G.; Mukherjee, S.; Pham, T.; Forrest, K.A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q.Y.; Zaworotko, M.J. Science 2019, 366,241. |
[83] | Lee, S.; Oh, S.; Oh, M. Angew. Chem. Int. Ed. 2020, 59,1327. |
[84] | Li, M.M.; Qiao, S.; Zheng, Y.L.; Andaloussi, Y.H.; Li, X.; Zhang, Z.J.; Li, A.; Cheng, P.; Ma, S.Q.; Chen, Y. J. Am. Chem. Soc. 2020, 142,6675. |
[85] | Li, X.F.; Huang, W.Q.; Liu, X.Q.; Bian, H. J. Solid State Chem. 2019, 278,120890. |
[86] | Liu, Y.; Xia, X.-X.; Tan, Y.-Y.; Li, S. Acta Chim. Sinica 2020, 78,250. (in Chinese) |
[86] | ( 刘洋, 夏潇潇, 谭媛元, 李松, 化学学报, 2020, 78,250.) |
[87] | Sun, Y.-H.; Qi, Y.-X.; Shen, Y.; Jing, C.-J.; Chen, X.-X.; Wang, X.-X. Acta Chim. Sinica 2020, 78,147. (in Chinese) |
[87] | ( 孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78,147.) |
[88] | Sun, Y.F.; Ma, M.; Jiang, L.; Sun, X.H.; Que, M.L.; Tao, C.B.; Wu, Z.T. Ind. Eng. Chem. Res. 2020, 59,13744. |
[89] | Lin, R.J.; Ge, L.; Diao, H.; Rudolph, V.; Zhu, Z.H. J. Mater. Chem. A 2016, 4,6084. |
/
〈 |
|
〉 |