综述

水滑石(LDHs)及其衍生物在生物医药领域的研究进展

  • 李佳欣 ,
  • 李蓓 ,
  • 王纪康 ,
  • 何蕾 ,
  • 赵宇飞
展开
  • a 北京化工大学化学学院 化工资源有效利用国家重点实验室 北京 100029
    b 澳大利亚昆士兰大学生物工程与纳米技术国家研究所 澳大利亚布里斯班 QLD 4072

李佳欣, 北京化工大学在读博士, 2017 年 6 月于北京化工大学理学院应用化学专业获得学士学位, 随后加入北京化工大学化工资源有效利用国家重点实验室宋宇飞教授课题组, 主要研究方向为水滑石光催化精细化学品的合成.

李蓓博士, 2015年6月于北京化工大学化工资源有效利用国家重点实验室卫敏课题组获得硕士学位, 随后加入澳大利亚昆士兰大学生物工程与纳米技术国家研究所Zhi Ping (Gordon) Xu课题组, 并于2019年9月获得博士学位. 主要研究方向为多功能纳米材料的生物医学应用.

何蕾博士, 北京化工大学副教授、硕士生导师. 主要致力于疾病相关生物靶分子的药物设计、仿生光电催化等交叉领域的研究.

赵宇飞, 北京化工大学化学学院教授, 博士生导师. 入选中国科协“青年人才托举工程”计划, 2019年度国家自然科学基金优秀青年科学基金获得者.
工作围绕水滑石基二维插层材料的可控合成及精细结构表征, 面向高值精细化学品的光/电催化合成. 近年来以第一/通讯作者在Chem. Soc. Rev., J. Am. Soc. Chem., Angew Chem., Adv. Mater., Chem, Joule, Ind. Eng. Chem. Res.等期刊上发表SCI收录论文30余篇; 累计SCI他引4500余次; 5篇入选ESI高被引论文, 已授权国家发明专利19项.

收稿日期: 2020-09-23

  网络出版日期: 2020-12-24

基金资助

项目受国家自然科学基金(21878008); 项目受国家自然科学基金(22007004); 北京自然科学基金(2182047); 北京自然科学基金(2202036); 中央高校基本科研业务费专项资金(buctrc202010)

Recent Advances in Layered Double Hydroxides and Their Derivatives for Biomedical Applications

  • Jiaxin Li ,
  • Bei Li ,
  • Jikang Wang ,
  • Lei He ,
  • Yufei Zhao
Expand
  • a State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029
    b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
† These authors contributed equally to this work.

Received date: 2020-09-23

  Online published: 2020-12-24

Supported by

National Natural Science Foundation of China(21878008); National Natural Science Foundation of China(22007004); Natural Science Foundation of Beijing(2182047); Natural Science Foundation of Beijing(2202036); Fundamental Research Funds for the Central Universities(buctrc202010)

摘要

生物医学涉及到人类健康相关的多个领域: 临床医疗、公共卫生、医药研发等多个方面. 其中在医药研发领域, 基于插层结构的纳米药物载体的研发已经成为重要发展方向之一. 水滑石(LDHs)及其衍生物具有成本低、合成简单、载药高效、细胞膜透过率高、生物相容性好、易降解等优点, 在生物医药领域得到了广泛关注. 本文主要介绍了LDHs及其衍生物的制备方法, 以及在抗菌治疗、生物成像和肿瘤治疗等方面的应用. 此外, 还简述了LDHs材料的规模化生产方法和现状, 进一步分析了LDHs的实际应用前景. 最后, 对LDHs材料在生物医药领域的未来发展方向进行了展望.

本文引用格式

李佳欣 , 李蓓 , 王纪康 , 何蕾 , 赵宇飞 . 水滑石(LDHs)及其衍生物在生物医药领域的研究进展[J]. 化学学报, 2021 , 79(3) : 238 -256 . DOI: 10.6023/A20090441

Abstract

With the awareness of human and public health increasing, biomedical research has been paid more and more attention. 2D intercalation materials with versatile physicochemical advantages have attracted extensive interest in biomedical applications. Layered double hydroxides (LDHs), as a class of typical 2D materials, have been widely utilized as various multi-function materials and exhibited great promise in biomedical applications. The general chemical formula of LDHs can be described as [M2+ 1–x M3+ x (OH)2]q+(An)q/n·yH2O, where M2+ and M3+ refer to divalent and trivalent mental cations, respectively, and An is an exchangeable anion, including inorganic, organic, biological compound, and even gene. LDHs have attracted a great attention in the field of biomaterials due to their good biocompatibility, pH sensitivity, biodegradability, high intracellular delivery efficacy and low cost, etc. In this review, we summarize the development of LDHs and related nanocomposites for biomedical applications including sterilization, cancer therapy, bioimaging, etc. In general, the LDH-based sterilization materials can be divided into four categories. The first type is the pristine LDHs and their derivatives named mixed mental oxides (MMO). The second type is organo-modified LDHs nanostructures, including surface modified LDHs and interlayer assembled biomaterials, which embed antibacterial agents or other biomolecules in the interlayer spaces. The last two are enzyme immobilized LDHs and Ag NPs deposited LDHs, respectively. In addition to sterilization, LDHs have also been applied to cancer diagnosis and therapy. We mainly introduce three types of cancer monotherapy, including photodynamic, photothermal and chemodynamic therapy. Moreover, cancer combination therapy and bioimaging for cancer diagnosis are also discussed. Furthermore, the large-scale synthesis of LDH-based materials plays a fundamental role in the potential biomedical applications in the future. Therefore, we summarize the feasible methods of large-scale production of LDHs reported in recent years. Among them, the SNAS (separate nucleation and aging steps) method with a simple and quick operation, and has realized the industrial scale-up production of LDHs. Finally, we also discussed the future challenges and opportunities of LDH-based biomaterials.

参考文献

[1]
Yang, K.; Feng, L.; Shi, X., Liu, Z. Chem. Soc. Rev. 2013, 42,530.
[2]
Zhao, Y.; Waterhouse, G. I. N.; Chen, G.; Xiong, X.; Wu, L.-Z.; Tung, C.-H., Zhang, T. Chem. Soc. Rev. 2019, 48,1972.
[3]
Narayanan, T. N.; Gupta, B. K.; Vithayathil, S. A.; Aburto, R. R.; Mani, S. A.; Taha-Tijerina, J.; Xie, B.; Kaipparettu, B. A.; Torti, S. V., Ajayan, P. M. Adv. Mater. 2012, 24,2992.
[4]
Liu, S.; Pan, X.; Liu, H. Angew. Chem., Int. Ed. 2020, 59,2.
[5]
Yang, X.; Wang, D.; Zhu, J.; Xue, L.; Ou, C.; Wang, W.; Lu, M.; Song, X., Dong, X. Chem. Sci. 2019, 10,3779.
[6]
Ouyang, J.; Feng, C.; Ji, X.; Li, L.; Gutti, H. K.; Kim, N. Y.; Artzi, D.; Xie, A.; Kong, N.; Liu, Y. N.; Tearney, G. J.; Sui, X.; Tao, W., Farokhzad, O. C. Angew. Chem., Int. Ed. 2019, 58,13405.
[7]
Lin, H.; Wang, Y.; Gao, S.; Chen, Y.; Shi, J. Adv. Mater. 2017, 30,1703284.
[8]
Mei, X.; Ma, J.; Bai, X.; Zhang, X.; Zhang, S.; Liang, R.; Wei, M.; Evans, D. G., Duan, X. Chem. Sci. 2018, 9,5630.
[9]
Chen, W.; Zuo, H.; Li, B.; Duan, C.; Rolfe, B.; Zhang, B.; Mahony, T. J., Xu, Z. P. Small 2018, 14,e1704465.
[10]
Mitter, N.; Worrall, E. A.; Robinson, K. E.; Li, P.; Jain, R. G.; Taochy, C.; Fletcher, S. J.; Carroll, B. J.; Lu, G. Q.; Xu, Z. P. Nat. Plants 2017, 3,16207.
[11]
Cao, Z.; Li, B.; Sun, L.; Li, L.; Xu, Z. P.; Gu, Z. Small Methods 2019,1900343.
[12]
Yan, L.; Gonca, S.; Zhu, G.; Zhang, W.; Chen, X. J. Mater. Chem. B 2019, 7,5583.
[13]
Zhao, Y.; Wang, C. J.; Gao, W.; Li, B.; Wang, Q.; Zheng, L.; Wei, M.; Evans, D. G.; Duan, X.; O'Hare, D. J. Mater. Chem. B 2013, 1,5988.
[14]
Mohapatra, L.; Parida, K. J. Mater. Chem. A 2016, 4,10744.
[15]
Fan, G.; Li, F.; Evans, D. G., Duan, X. Chem. Soc. Rev. 2014, 43,7040.
[16]
Wei, M.; Yang, Y.; Yu, J. Acta Chim. Sinica 2019, 77,1129.
[16]
( 余俊, 杨宇森, 卫敏, 化学学报, 2019, 77, 1129.)
[17]
Huo, W.; Cao, T.; Liu, X.; Xu, W.; Dong, B.; Zhang, Y.; Dong, F. Green Energy Environ. 2019, 4,270.
[18]
Qiu, C.; Bai, S.; Cao, W.; Tan, L.; Liu, J.; Zhao, Y.; Song, Y.-F. Trans. Tianjin Univ. 2020, 26,352.
[19]
Zhang, L.; Guo, D.; Tantai, X.; Jiang, B.; Sun, Y.; Yang, N. Trans. Tianjin Univ. 2020,.
[20]
Feng, J.; He, Y.; Liu, Y.; Du, Y.; Li, D. Chem. Soc. Rev. 2015, 44,5291.
[21]
Omwoma, S.; Chen, W.; Tsunashima, R.; Song, Y.-F. Coordin. Chem. Rev. 2014, 58,258.
[22]
Mishra, G.; Dash, B.; Pandey, S. Appl. Clay Sci. 2018, 153,172.
[23]
Zhao, Y.; Jia, X.; Waterhouse, G. I. N.; Wu, L.-Z; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2016, 6,1501974.
[24]
Laipan, M.; Yu, J.; Zhu, R.; Zhu, J.; Smith, A. T.; He, H.; O'Hare, D., Sun, L. Mater. Horizons 2020, 7,715.
[25]
Wang, X.; Wang, Z.; Bai, Y.; Tan, L.; Xu, Y.; Hao, X.; Wang, J.; Mahadi, A. H.; Zhao, Y.; Zheng, L., Song, Y.-F. J. Energy Chem. 2020, 46,1.
[26]
Wang, L.; Yu, Q.; Feng, C.; Zhang, Y.; Z, Hu, J. Chin. J. Org. Chem. 2019, 39,1787.
[26]
( 王力耕, 余琴, 冯春, 张岩, 胡军, 有机化学, 2019, 39, 1787.)
[27]
Yan, H.; Zhao, X.-J.; Zhu, Y.-Q.; Wei, M.; Evans, D. G., Duan, X. In Structure and Bonding, Vol. 182, Ed.:Mingos, D. M.P., Springer, Cham, 2019, p. 89.
[28]
Guan, S; Liang, R; Li, C; Yan, D; Wei, M; Evans, D G, Duan, X. J. Mater. Chem. B 2016, 4,1331.
[29]
Zhao, Y; Jia, X; Chen, G; Shang, L; Waterhouse, G I; Wu, L Z; Tung, C H; O'Hare, D, Zhang, T. J. Am. Chem. Soc. 2016, 138,6517.
[30]
Guo, Y.; Wang, J.; Li, D.; Tang, P.; Leroux, F.; Feng, Y. Dalton Trans. 2018, 47,3144.
[31]
Wang, Z.; Xu, S. M.; Xu, Y.; Tan, L.; Wang, X.; Zhao, Y.; Duan, H.; Song, Y. F. Chem. Sci. 2019, 10,378.
[32]
Tan, L.; Xu, S. M.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W.; Jo, Y. K.; Hwang, S. J.; Cao, X.; Zheng, X.; Yan, H.; Zhao, Y.; Duan, H.; Song, Y.-F. Angew. Chem., Int. Ed. 2019, 58,11860.
[33]
Qiu, L.; Gao, Y.; Lu, P.; O'Hare, D.; Wang, Q. J. Appl. Polym. Sci. 2018, 135,46204.
[34]
Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. ACS Appl. Mater. Interfaces 2018, 10,2667.
[35]
Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Chem. Commun. 2011, 47,3556.
[36]
Xiong, P.; Zhang, X.; Wan, H.; Wang, S.; Zhao, Y.; Zhang, J.; Zhou, D.; Gao, W.; Ma, R.; Sasaki, T.; Wang, G. Nano Lett. 2019, 19,4518.
[37]
Li, T.; Hao, X.; Bai, S.; Zhao, Y.; Song, Y.-F. Acta Phys. -Chim. Sin. 2020, 36,1912005.
[37]
( 李天, 郝晓杰, 白莎, 赵宇飞, 宋宇飞, 物理化学学报, 2020, 36,1912005.)
[38]
Park, D.-H.; Hwang, S.-J.; Oh, J.-M.; Yang, J.-H., Choy, J.-H. Prog. Polym. Sci. 2013, 38,1442.
[39]
Wang, N.; Pang, H.; Yu, S.; Gu, P.; Song, S.; Wang, H.; Wang, X. Acta Chimica Sinica 2019, 77,143.
[39]
( 王宁, 庞宏伟, 于淑君, 顾鹏程, 宋爽, 王宏青, 王祥科, 化学学报, 2019, 77,143.) bb1bdfcb-c17e-4662-9e96-5bb944fac274
[40]
Kwon, D.; Kang, J. Y.; An, S.; Yang, I.; Jung, J. C. J. Energy Chem. 2020, 46,229.
[41]
Nocchetti, M.; Donnadio, A.; Ambrogi, V.; Andreani, P.; Bastianini, M.; Pietrella, D.; Latterini, L. J. Mater. Chem. B 2013, 1,2383.
[42]
Wang, D.; Peng, F.; Li, J.; Qiao, Y.; Li, Q.; Liu, X. Mater. Today 2017, 20,238.
[43]
Wang, S.; Xu, M.; Huang, K.; Zhi, J.; Sun, C.; Wang, K.; Zhou, Q.; Gao, L.; Jia, Q.; Shi, H.; An, Z.; Li, P.; Huang, W. Sci. Chin. Mater. 2019, 63,316.
[44]
Teng, Z.; Yang, N.; Lv, H.; Wang, S.; Hu, M.; Wang, C.; Wang, D.; Wang, G. Chem 2019, 5,664.
[45]
Zhao, Y.; Chen, P.; Zhang, B.; Su, D. S.; Zhang, S.; Tian, L.; Lu, J.; Li, Z.; Cao, X.; Wang, B.; Wei, M.; Evans, D. G.; Duan, X. Chem. - Eur. J. 2012, 18,11949.
[46]
Wu, L-Z. Acta Phys.-Chim. Sin. 2020, 36,2004005.
[46]
( 吴骊珠, 物理化学学报, 2020, 36,2004005)
[47]
Hargreaves, J. S. J.; Chung, Y.-M.; Ahn, W.-S.; Hisatomi, T.; Domen, K.; Kung, M. C.; Kung, H. H. Appl. Catal. A Gen. 2020, 594,117419.
[48]
Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; Ponce de León, C., Walsh, F. C. Nat. Rev. Chem. 2019, 3,442.
[49]
García-Fernández, I.; Polo-López, M. I.; Oller, I., Fernández-Ibá?ez, P. Appl. Catal., B 2012, 20,121.
[50]
Peng, F.; Wang, D.; Zhang, D.; Cao, H., Liu, X. Appl. Clay Sci. 2018, 165,179.
[51]
Moaty, S. A. A.; Farghali, A. A.; Khaled, R. Mater. Sci. Eng. C 2016, 68,184.
[52]
Amin, R. M.; Taha, M.; Abdel Moaty, S. A.; Abo El-Ela, F. I.; Nassar, H. F.; GadelHak, Y., Mahmoud, R. K. RSC Adv. 2019, 9,32544.
[53]
Suo, H.; Peng, C.; Jing, F.; Yu, S.; Cui, S., Shen, X. Mater. Lett. 2019, 234,253.
[54]
Yamamoto, O.; Sawai, J.; Sasamoto, T. Int. J. Environ. Sci. Technol. 2000, 2,451.
[55]
Hao, Y. J.; Liu, B.; Tian, L. G.; Li, F. T.; Ren, J.; Liu, S. J.; Liu, Y.; Zhao, J.; Wang, X. J. ACS Appl. Mater. Interfaces 2017, 9,12687.
[56]
Lin, Y.-J.; Li, D.-Q.; Wang, G.; Huang, L.; Duan, X. J. Mater. Sci. 2005, 16,53.
[57]
Huang, L.; Li, D. Q.; Lin, Y. J.; Wei, M.; Evans, D. G.; Duan, X. J. Inorg. Biochem. 2005, 99,986.
[58]
Huang, L.; Li, D. Q.; Evans, D. G.; Duan, X. Eur. Phys. J. D 2005, 34,321. 293da9c0-b5fe-46e3-bef9-5e0675b39ef1
[59]
Lv, Y.; Gao, L.; Feng, S.; Wang, S.; Qiao, Y.; Li, Q. Sep. Sci. Technol. 2018, 54,2625.
[60]
Li, M.; Xu, Z. P.; Sultanbawa, Y.; Chen, W.; Liu, J.; Qian, G. Colloids Surf., B 2019, 181,585.
[61]
Wang, R.; Pan, K.; Han, D.; Jiang, J.; Xiang, C.; Huang, Z.; Zhang, L.; Xiang, X. ChemSusChem 2016, 9,2470.
[62]
Han, D.; Xiang, X.; Yang, J.; Liu, J. Sci. Sin. Chim. 2017, 47,465.
[63]
Xu, Y.; Tan, L.; Wang, Z.; Hao, X.; Wang, J.; Zhao, Y.; Song, Y.-F. Chin. Sci. Bull. 2018, 63,3598.
[63]
( 许艳旗, 谭玲, 王泽林, 郝晓杰, 王纪康, 赵宇飞, 宋宇飞, 科学通报, 2018, 63,3598.)
[64]
Sun, J.; Fan, H.; Wang, N.; Ai, S. J. Nanopart. Res. 2014, 16,2597.
[65]
Mishra, G.; Dash, B.; Sethi, D.; Pandey, S.; Mishra, B. K. Energy Environ. Sci. 2017, 34,516.
[66]
Liu, X.; Hu, T.; Lin, G.; Wang, X.; Zhu, Y.; Liang, R.; Duan, W.; Wei, M. RSC Adv. 2020, 10,9786.
[67]
Nguyen, T. K. L.; Nguyen, T. L.; Cao, X. T.; Park, C.; Lim, K. T. Mol. Cryst. Liq. Cryst. 2016, 635,120.
[68]
Xu, F. J.; Zhong, S. P.; Yung, L. Y. L.; Kang, E. T.; Neoh, K. G. Biomacromolecules 2004, 5,2392.
[69]
Ren, L.; He, J.; Evans, D. G.; Duan, X.; Ma, R. J. Mol. Catal. B: Enzym. 2001, 16,65.
[70]
Shi, W.; Wei, M.; Jin, L.; Li, C. J. Mol. Catal. B: Enzym. 2007, 47,58.
[71]
Wang, Y.; Liu, C.; Zhang, Y.; Zhang, B.; Liu, J. ACS Sustain. Chem. Eng. 2015, 3,1183.
[72]
Wang, Z.; Yu, H.; Ma, K.; Chen, Y.; Zhang, X.; Wang, T.; Li, S.; Zhu, X.; Wang, X. Bioconjug. Chem. 2018, 29,2090.
[73]
Chen, C.; Gunawan, P.; Lou, X. W. D.; Xu, R. Adv. Funct. Mater. 2012, 22,780.
[74]
Mishra, G.; Dash, B.; Pandey, S.; Mohanty, P. P. J. Environ. Chem. Eng. 2013, 1,1124.
[75]
Sun, J.; Li, J.; Fan, H.; Ai, S. J. Mater. Chem. B 2013, 1,5436.
[76]
Xiao, F.; Liu, X.; Xiao, Y.; Chen, F.; Wu, Y. New J. Chem. 2017, 41,7260.
[77]
Wang, Y.; Chen, C.; Zhang, D.; Wang, J. Appl. Catal., B Environ. 2020, 261,118256.
[78]
Gohi, B.; Zeng, H. Y.; Cao, X. J.; Zou, K. M.; Diao, Y. Polymers 2019, 11,1588.
[79]
Malekkhaiat, H. S.; Nystrom, L.; Nordstrom, R.; Xu, Z. P.; Davoudi, M.; Schmidtchen, A.; Malmsten, M. Phys. Chem. Chem. Phys. 2017, 19,23832.
[80]
Peng, F.; Wang, D.; Zhang, D.; Yan, B.; Cao, H.; Qiao, Y.; Liu, X. ACS Biomater. Sci. Eng. 2018, 4,4112.
[81]
Zhao, Y.; Chen, Y.; Wang, W.; Zhou, Z.; Shi, S.; Li, W.; Chen, M.; Li, Z. Mater. Lett. 2020, 265,127349.
[82]
Mallakpour, S.; Hatami, M. Polymer 2018, 154,188.
[83]
Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. ACS Nano 2018, 12,11819.
[84]
Liang, R.; Tian, R.; Ma, L.; Zhang, L.; Hu, Y.; Wang, J.; Wei, M.; Yan, D.; Evans, D. G.; Duan, X. Adv. Funct. Mater. 2014, 24,3144.
[85]
Gao, R.; Mei, X.; Yan, D.; Liang, R.; Wei, M. Nat. Commun. 2018, 9,2798.
[86]
Li, C.; Liang, R.; Tian, R.; Guan, S.; Yan, D.; Luo, J.; Wei, M.; Evans, D. G.; Duan, X. RSC Adv. 2016, 6,16608.
[87]
Cao, Z.; Zhang, L.; Liang, K.; Cheong, S.; Boyer, C.; Gooding, J. J.; Chen, Y.; Gu, Z. Adv. Sci. 2018, 5,1801155.
[88]
Yu, Z.; Hu, P.; Xu, Y.; Bao, Q.; Ni, D.; Wei, C.; Shi, J. Small 2020, 16,e1907233.
[89]
Liu, J.; Wu, Y.; Fu, C.; Li, B.; Li, L.; Zhang, R.; Xu, T.; Xu, Z. P. Small 2020,e2002115.
[90]
Peng, L.; Mei, X.; He, J.; Xu, J.; Zhang, W.; Liang, R.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2018, 30,e1707389.
[91]
Zhang, L. X.; Sun, X. M.; Xu, Z. P.; Liu, R. T. ACS Appl. Mater. Interfaces 2019, 11,35566.
[92]
Dai, Y.; Xu, C.; Sun, X.; Chen, X. Chem. Soc. Rev. 2017, 46,3830.
[93]
Li, B.; Gu, Z.; Kurniawan, N.; Chen, W.; Xu, Z. P. Adv. Mater. 2017, 29,1700373.
[94]
Li, B.; Tang, J.; Chen, W.; Hao, G.; Kurniawan, N.; Gu, Z., Xu, Z. P. Biomaterials 2018, 177,40.
[95]
Plotkin, S. A. Clin. Infect. Dis. 2008, 47,401.
[96]
Liu, W.; Xu, S.; Guan, S.; Liang, R.; Wei, M.; Evans, D. G., Duan, X. Adv. Mater. 2017, 30,1704376.
[97]
Hu, T.; He, J.; Zhang, S.; Mei, X.; Zhang, W.; Liang, R.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2018, 54,5760.
[98]
Mei, X.; Wang, W.; Yan, L.; Hu, T.; Liang, R.; Yan, D.; Wei, M.; Evans, D. G.; Duan, X. Biomaterials 2018, 165,14.
[99]
Chen, W. Y.; Zhang, B.; Mahony, T.; Gu, W. Y.; Rolfe, B.; Xu, Z. P. Small 2016, 12,1627.
[100]
Yan, S. Y.; Gu, W. Y.; Zhang, B.; Rolfe, B. E.; Xu, Z. P. Dalton T 2018, 47,2956.
[101]
Yan, S. Y.; Rolfe, B. E.; Zhang, B.; Mohammed, Y. H.; Gu, W. Y.; Xu, Z. P. Biomaterials 2014, 35,9508. 1e2b868a-de35-4e18-b22a-713ca20d5eb2
[102]
Zhang, L. X.; Xie, X. X..; Liu, D. Q.; Xu, Z. P.; Liu, R. T. Biomaterials 2018, 174,54.
[103]
Williams, G. R.; Fierens, K.; Preston, S. G.; Lunn, D.; Rysnik, O.; De Prijck, S.; Kool, M.; Buckley, H. C.; Lambrecht, B. N.; O'Hare, D.; Austyn, J. M. J. Exp. Med. 2014, 211,1019.
[104]
Tenllado, F.; Llave, C.; Diaz-Ruiz, J. R. Virus Res. 2004, 102,85.
[105]
Tenllado, F.; Martinez-Garcia, B.; Vargas, M.; Diaz-Ruiz, J. R. BMC Biotechnol. 2003, 3,3.
[106]
Caspar, D. L. D. Nature 1956, 177,928.
[107]
Scholthof, K. B. G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; Hemenway, C., Foster, G. D. Mol. Plant Pathol. 2011, 12,938.
[108]
Bruna, F.; Pavlovic, I.; Celis, R.; Barriga, C.; Cornejo, J.; Ulibarri, M. A. Appl. Clay Sci. 2008, 42,194.
[109]
Chaara, D.; Bruna, F.; Ulibarri, M. A.; Draoui, K.; Barriga, C.; Pavlovic, I. J. Hazard Mater. 2011, 196,350.
[110]
Khan, A. I.; Ragavan, A.; Fong, B.; Markland, C.; O'Brien, M.; Dunbar, T. G.; Williams, G R, O'Hare, D. Ind. Eng. Chem. Res. 2009, 48,10196.
[111]
Khan, M. A.; Choi, C. L.; Lee, D. H.; Park, M.; Lim, B. K.; Lee, J. Y.; Choi, J. J. Phys. Chem. Solids 2007, 68,1591.
[112]
Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Chem. Mater. 2002, 14,4286.
[113]
Evans, D. G.; Duan, X. Chem. Commun. 2006,485.
[114]
Wang, Z.; Xu, Y.; Tan, L.; Zhao, Y.; Song, Y.-F. Chin. Sci. Bull. 2020, 65,547.
[114]
( 王泽林, 许艳旗, 谭玲, 赵宇飞, 宋宇飞, 科学通报, 2020, 65,547.)
[115]
Costantino, U.; Bugatti, V.; Gorrasi, G.; Montanari, F.; Nocchetti, M.; Tammaro, L.; Vittoria, V. ACS Appl. Mater. Interfaces 2009, 1,668.
[116]
Marek, A. A.; Verney, V.; Totaro, G.; Sisti, L.; Celli, A.; Cionci, N. B.; Di Gioia, D.; Massacrier, L.; Leroux, F. Appl. Clay Sci. 2020, 188,105502.
[117]
Mulligan, C. N.; Yong, R. N.; Gibbs, B. F. Eng. Geol. 2001, 60,371.
[118]
Ko, I.; Chang, Y. Y.; Lee, C.H; Kim, K. W. J. Hazard Mater. 2005, 127,1.
[119]
Lei, X.; Jin, M.; Williams, G. R. Energy Environ. Sci. 2014, 3,4.
文章导航

/