三相界面电催化二氧化碳还原研究进展
收稿日期: 2020-11-25
网络出版日期: 2021-01-14
基金资助
北京市自然科学基金(2194089); 国家自然科学基金(21902168)
Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction
Received date: 2020-11-25
Online published: 2021-01-14
Supported by
Beijing Natural Science Foundation(2194089); National Natural Science Foundation of China(21902168)
电催化二氧化碳还原是能源化学及催化科学的研究重点与难点. 气-固-液三相界面模型作为物理化学中的基本概念, 近年来被越来越多地应用于电催化二氧化碳还原反应的研究, 其相比于传统固-液两相体系表现出了诸多优点. 本综述阐述了三相界面电催化二氧化碳还原研究进展, 对三相界面电催化体系进行分类及原理探究. 再具体到二氧化碳还原反应, 讨论其水下超亲气体系以及气体扩散层体系的结构特性及电催化性质, 并对包括反应物界面扩散及界面浸润性等影响因素进行了系统分析. 最后对当前研究存在的问题及今后电催化二氧化碳还原领域的发展方向进行了总结与展望.
马一宁 , 施润 , 张铁锐 . 三相界面电催化二氧化碳还原研究进展[J]. 化学学报, 2021 , 79(4) : 369 -377 . DOI: 10.6023/A20110540
Electrocatalytic carbon dioxide reduction is the focus and nodus of energy chemistry and catalytic science. As a basic concept in physical chemistry, gas-solid-liquid triphase interface model has been widely studied in electrocatalytic carbon dioxide reduction reaction in recent years, showing many advantages compared with traditional solid-liquid biphase systems. In this review, we discuss the research progress of triphase interface eletrocatalytic carbon dioxide reduction, focused on the classification as well as the principle of triphase interface eletrocatalytic systems. Then, carbon dioxide electroreduction properties of various triphase systems including underwater superaerophilic and gas diffusion layer systems are discussed, with special attention on the influence factors, such as the interfacial diffusion and interfacial wettability of reactants. Finally, we summarize and prospect the existing problems and the future development direction of electrocatalytic carbon dioxide reduction based on triphase systems.
[1] | Chu, S.; Majumdar, A. Nature 2012, 488,294. |
[2] | Windle, C.D.; Perutz, R.N. Coordin. Chem. Rev. 2012, 256,2562. |
[3] | Liu, C.; Colon, B.C.; Ziesack, M.; Silver, P.A.; Nocera, D.G. Science 2016, 352,1210. |
[4] | Li, Z.J.; Li, G.; Chen, X.L.; Xia, Z.; Yang, B.; Yao, J.N.; Lei, L.C.; Hou, Y. ChemSusChem 2018, 11,2382. |
[5] | Choi, K.M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C.A.; Barmanbek, J.T. D.; Alshammari, A.S.; Yang, P.D.; Yaghi, O.M. J. Am. Chem. Soc. 2017, 139,356. |
[6] | Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 6,897. |
[7] | Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc. Faraday Trans. 1989, 85,2309. |
[8] | Saveant, J.M. ChemElectroChem 2016, 3,1967. |
[9] | Dufek, E.J.; Lister, T.E.; Stone, S.G.; Mcllwain, M.E. J. Electrochem. Soc. 2012, 159,F514. |
[10] | Carroll, J.J.; Slupsky, J.D.; Mather, A.E. J. Phys. Chem. Ref. Data 1991, 20,1201. |
[11] | Tackett, B.M.; Gomez, E.; Chen, J.G. Nat. Catal. 2019, 2,381. |
[12] | Chi, C.; Juliet, F.K. K.; Stafford, W.S. Chem 2018, 4,2571. |
[13] | Zhang, Y.; Guo, S.X.; Zhang, X.L.; Bond, A.M.; Zhang, J. Nano Today 2020, 31,100835. |
[14] | Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39,1833. |
[15] | Schreier, M.; Yoon, Y.; Jackson, M.N.; Surendranath, Y. Angew. Chem. Int. Ed. 2018, 57,10221. |
[16] | Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 11,1695. |
[17] | Cheng, T.; Xiao, H.; Goddard, W.A. J. Am. Chem. Soc. 2016, 138,133802. |
[18] | Jones, J.; Prakash, G.K. S.; Olah, G.A. Isr. J. Chem. 2014, 54,1451. |
[19] | Gao, S.; Lin, Y.; Jiao, X.C.; Sun, Y.F.; Luo, Q.Q.; Zhang, W.H.; Li, D.Q.; Yang, J.L.; Xie, Y. Nature 2016, 529,68. |
[20] | Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Angew. Chem. Int. Ed. 2013, 52,7372. |
[21] | Ting, L.R. L.; Yeo, B.S. Curr. Opin. Electrochem. 2018, 8,126. |
[22] | Albo, J.; Sáez, A.; Solla-Gullón, J.; Montiel, V.; Irabien, A. Appl. Catal. B-Environ. 2015, 176,709. |
[23] | Li, J.; Chen, G.X.; Zhu, Y.Y.; Liang, Z.; Pei, A.; Wu, C.L.; Wang, H.X.; Lee, H.R.; Liu, K.; Chu, S.; Cui, Y. Nat. Catal. 2018, 1,592. |
[24] | Xu, W.W.; Lu, Z.Y.; Sun, X.M.; Jiang, L.; Duan, X. Acc. Chem. Res. 2018, 51,1590. |
[25] | Lu, Z.Y.; Zhu, W.; Yu, X.Y.; Zhang, H.C.; Li, Y.J.; Sun, X.M.; Wang, X.W.; Wang, H.; Wang, J.M.; Luo, J.; Lei, X.D.; Jiang, L. Adv. Mater. 2014, 26,2683. |
[26] | Wen, L.P.; Tian, Y.; Jiang, L. Angew. Chem. Int. Ed. 2015, 54,3387. |
[27] | Wang, J.M.; Zheng, Y.M.; Nie, F.Q.; Zhai, J.; Jiang, L. Langmuir 2009, 25,14129. |
[28] | Cai, Z,; Zhang, Y.S.; Zhao, Y.X.; Wu, Y.S.; Xu, W.W.; Wen, X.M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H.L.; Kuang, Y.; Sun, X.M. Nano Res. 2019, 12,345. |
[29] | Schouten, K.J. P.; Kwon, Y.; Van der Ham, C.J. M.; Qin, Z.; Koper, M.T. M. Chem. Sci. 2011, 2,1902. |
[30] | Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Nat. Mater. 2019, 18,1222. |
[31] | Dinh, C.T.; Burdyny, T.; Kibria, M.G.; Selfitokaldani, A.; Gabardo, C.M.; de Arquer, F.P. G.; Kiani, A.; Edwards, J.P.; De Luna, P.; Bushuyev, O.S.; Zou, C.Q.; Quintero-Bermudez, R.; Pang, Y.J.; Sinton, D.; Sargent, E.H. Science 2018, 360,783. |
[32] | Zheng, T.T.; Jiang, K.; Ta, N.; Hu, Y.F.; Zeng, J.; Liu, J.Y.; Wang, H.T. Joule 2019, 3,265. |
[33] | de Arquer, F.P. G.; Dinh, C.T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A.R.; Nam, D.H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; Li, Y.C.; Li, F.W.; Edwards, J.; Richter, L.J.; Thorpe, S.J.; Sinton, D.; Sargent, E.H. Science 2020, 367,661. |
[34] | Kaczur, J.J.; Yang, H.Z.; Liu, Z.C.; Sajjad, S.A.; Masel, R.I. Front. Chem. 2018, 6,263. |
[35] | Yin, Z.L.; Peng, H.Q.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.M.; Xiao, L.; Wang, G.W.; Lu, J.T.; Zhuang, L. Energy Environ. Sci. 2019, 12,2455. |
[36] | Xiong, X.Y.; Wang, Z.P.; Zhang, Y.; Li, Z.H.; Shi, R.; Zhang, T.R. Appl. Catal. B-Environ. 2020, 264,118518. |
[37] | Burdyny, T.; Graham, P.J.; Pang, Y.J.; Dinh, C.T.; Min, L.; Sargent, E.H.; Sinton, D. ACS Sustain. Chem. Eng. 2017, 5,4031. |
[38] | Shi, R.; Guo, J.H.; Zhang, Y.R.; Waterhouse, G.I. N.; Han, Z.J.; Zhao, Y.X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T.R. Nat. Commun. 2020, 11,3028. |
[39] | Nesbitt, N.T.; Burdyny, T.; Simonson, H.; Salvatore, D.; Bohra, D.; Kas, R.; Smith, W.A. ACS Catal. 2020, 10,14093. |
[40] | Liu, Z.; Sheng, X.; Wang, D.D.; Feng, X.J. iScience 2019, 17,67. |
[41] | Giorgi, L.; Antilini, E.; Pozio, A.; Passalacqua, E. Electrochim. Acta 1998, 43,3675. |
[42] | Martínez-Rodríguez, M.J.; Cui, T.; Shipalee, S.; Seraphin, S.; Duong, B.; Van Zee, J.W. J. Power Sources 2012, 207,91. |
[43] | Jhong, H.-R. M.; Brushett, F.R.; Yin, L.L.; Stevenson, D.M.; Kenis, P.J. A. J. Electrochem. Soc. 2012, 159,B292. |
[44] | Kim, B.; Hillman, F.; Arioshi, M.; Fujikawa, S.; Kenis, P.J. A. J. Power Sources 2016, 312,192. |
[45] | Jhong, H.-R. M.; Brushett, F.R.; Kenis, P.J. A. Adv. Energy Mater. 2013, 3,589. |
[46] | Gabado, C.M.; Seifitokaldani, A.; Edwards, J.P.; Dinh, C.-T.; Burdyny, T.; Kibria, M.G.; O’Brien, C.P.; Sargent, E.H.; Sinton, D. Energy Environ. Sci. 2018, 11,2531. |
[47] | Thorson, M.R.; Siil, K.I.; Kenis, P.J. A. J. Electrochem. Soc. 2013, 160,F69. |
[48] | Kim, B.; Ma, S.; Jhong, H.-R. M.; Kenis, P.J. A. Electrochim. Acta 2015, 166,271. |
[49] | Verma, S.; Lu, X.; Ma, S.; Masel, R.I.; Kenis, P.J. A. Phys. Chem. Chem. Phys. 2016, 18,7075. |
[50] | Chen, K.H.; Li, H.R.; He, L.N. Chin. J. Org. Chem. 2020, 40,2195. (in Chinese) |
[50] | ( 陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40,2195.) |
[51] | Jhong, H.-R. M.; Tornow, C.E.; Kim, C.; Verma, S.; Oberst, J.L.; Anderson, P.S.; Gewirth, A.A.; Fujigaya, T.; Nakashima, N.; Kenis, P.J. A. ChemPhysChem 2017, 18,3274. |
[52] | Wang, Y.J.; Wilkinson, D.P.; Zhang, J.J. Chem. Rev. 2011, 111,7625. |
[53] | Liu, M.M.; Zhang, R.Z.; Chen, W. Chem. Rev. 2014, 114,5117. |
[54] | Wang, Z.L.; Xu, D.; Xu, J.J.; Zhang, X.B. Chem. Soc. Rev. 2014, 43,7746. |
[55] | Li, Y.G.; Gong, M.; Liang, Y.Y.; Feng, J.; Kim, J.E.; Wang, H.L.; Hong, G.S.; Zhang, B.; Dai, H.J. Nat. Commun. 2013, 4,1805. |
[56] | Lu, Z.Y.; Xu, W.W.; Ma, J.; Li, Y.J.; Sun, X.M.; Jiang, L. Adv. Mater. 2016, 28,7155. |
[57] | Lei, Y.J.; Sun, R.Z.; Zhang, X.C.; Feng, X.J.; Jiang, L. Adv. Mater. 2016, 28,1477. |
[58] | Wang, Y.L.; Shi, R.; Shang, L.; Waterhouse, G.I. N.; Zhao, J.Q.; Zhang, Q.H.; Gu, L.; Zhang, T.R. Angew. Chem. Int. Ed. 2020, 59,13057. |
[59] | Chen, S.L.; Patil, S.A.; Schroeder, U. Appl. Mater. 2018, 211,1089. |
[60] | Li, J.; Chang, K.; Zhang, H.C.; He, M.; Goddard, W.A.; Chen, J.G. G.; Cheng, M.J.; Lu, Q. ACS Catal. 2019, 9,4709. |
[61] | Chen, R.X.; Su, H.Y.; Liu, D.Y.; Huang, R.; Meng, X.G.; Cui, X.J.; Tian, Z.Q.; Zhang, D.H.; Deng, D.H. Angew. Chem. Int. Ed. 2019, 59,154. |
[62] | Jouny, M.; Luc, W.; Jiao, F. Nat. Catal. 2018, 1,1002. |
[63] | Li, Y.J.; Zhang, H.C.; Xu, T.H.; Lu, Z.Y.; Wu, X.C.; Wan, P.B.; Sun, X.M.; Jiang, L. Adv. Funct. Mater. 2015, 25,1737. |
[64] | Hao, M.; Chanbonneau, V.; Fomena, N.N.; Gaudet, J.; Bruce, D.R.; Garbarino, S.; Harrington, D.A.; Gauy, D. ACS Appl. Energy Mater. 2019, 2,5734. |
[65] | Yuan, J.X.; Cheng, X.D.; Wang, H.Q.; Lei, C.J.; Pardiwala, S.; Yang, B.; Li, Z.J.; Zhang, Q.H.; Lei, L.C.; Wang, S.B.; Hou, Y. Nano-Micro Lett. 2020, 12,104. |
/
〈 |
|
〉 |