综述

混合导体透氧膜反应器中水分解反应研究进展

  • 蔡莉莉 ,
  • 王静忆 ,
  • 朱雪峰 ,
  • 杨维慎
展开
  • a 中国科学院大连化学物理研究所 催化基础国家重点实验室 大连 116023
    b 中国科学院大学 北京 100049
    c 中国科学院洁净能源创新研究院 大连 116023

蔡莉莉, 博士, 2019年6月于中国科学院大连化学物理研究所获理学博士学位, 目前在中国科学院大连化学物理研究所从事博士后工作, 主要研究方向为催化膜反应器.

朱雪峰, 研究员, 博士生导师. 2006年12月于中国科学院大连化学物理研究所获理学博士学位. 主要从事用于气体分离的致密陶瓷膜、膜催化及相关电催化方面的研究.

收稿日期: 2020-12-09

  网络出版日期: 2021-01-25

基金资助

项目受国家自然科学基金(22008231); 项目受国家自然科学基金(21776267); 中国科学院洁净能源创新研究院(DNL180203); 辽宁省“兴辽英才”计划(XLYC1801004)

Recent Progress on Mixed Conducting Oxygen Transport Membrane Reactors for Water Splitting Reaction

  • Lili Cai ,
  • Jingyi Wang ,
  • Xuefeng Zhu ,
  • Weishen Yang
Expand
  • a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
    b University of Chinese Academy of Sciences, Beijing 100049, China
    c Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China

Received date: 2020-12-09

  Online published: 2021-01-25

Supported by

National Natural Science Foundation of China(22008231); National Natural Science Foundation of China(21776267); Dalian National Laboratory for Clean Energy (DNL)(DNL180203); LiaoNing Revitalization Talents Program(XLYC1801004)

摘要

混合导体透氧膜反应器可以将供氧反应、氧分离和耗氧反应耦合在一个单元, 实现反应和分离一体化, 简化化工过程. 水分解反应参与的混合导体透氧膜反应器能够实现氢气的制备和分离, 近年来受到越来越多的关注. 这篇文章综述了混合导体透氧膜反应器中水分解反应领域的研究进展, 总结了包括膜材料、催化剂、操作条件等对透氧膜反应器中水分解反应的影响, 分析了目前存在的问题, 同时展望了该领域在膜材料、膜结构和催化剂开发等方面的未来发展方向, 希望有助于促进膜反应器中水分解反应的研究.

本文引用格式

蔡莉莉 , 王静忆 , 朱雪峰 , 杨维慎 . 混合导体透氧膜反应器中水分解反应研究进展[J]. 化学学报, 2021 , 79(5) : 588 -599 . DOI: 10.6023/A20120561

Abstract

Catalytic membrane reactors based on mixed conducting oxygen transport membranes (OTMs) have the ability to integrate reaction and separation, and thus simplify the chemical process by coupling oxygen supplying reaction, oxygen separation and oxygen consumption reaction into a single unit. In recent years, more and more attentions have been paid to the mixed conducting OTM reactors for water splitting reaction owing to their applications for preparation and separation of hydrogen. In this article, we summarize the recent progress on mixed conducting OTM reactors for water splitting reaction, including the effects of membrane materials, catalysts and operation conditions on the water splitting involved membrane reactors. Meanwhile, the current existing problems in the above aspects are analyzed, and the future development of membrane materials, membrane structures and catalysts in this field is prospected. We wish this paper will be helpful for the development of the water splitting in membrane reactors.

参考文献

[1]
Zhu, X. F.; Li, M. R.; Liu, H. Y.; Zhang, T. Y.; Cong, Y.; Yang, W. S. J. Membr. Sci. 2012, 394-395,120.
[2]
Geffroy, P.-M.; Fouletier, J.; Richet, N.; Chartier, T. Chem. Eng. Sci. 2013, 87,408.
[3]
Sunarso, J.; Baumann, S.; Serra, J. M.; Meulenberg, W. A.; Liu, S.; Lin, Y. S. Diniz da Costa, J.C. J. Membr. Sci. 2008, 320,13.
[4]
Shao, Z. P.; Yang, W. S.; Cong, Y.; Dong, H.; Tong, J. H.; Xiong, G. X. J. Membr. Sci. 2000, 172,177.
[5]
Tan, X. Y.; Liu, N.; Meng, B.; Liu, S. M. J. Membr. Sci. 2011, 378,308.
[6]
Zeng, P. Y.; Ran, R.; Chen, Z. H.; Gu, H. X.; Shao, Z. P.; Liu, S. M. AIChE J. 2007, 53,3116.
[7]
Zhu, Y.; Cai, L. L.; Li, W. P.; Cao, Z. W.; Li, H. B.; Jiang, H. Q.; Zhu, X. F.; Yang, W. S. AIChE J. 2020, 66,e16291.
[8]
Wang, S.; Shi, L.; Xie, Z. A.; Wang, H. Q.; Lan, Q.; He, Y.; Yan, D.; Zhang, X.; Luo, H. X. Chin. Sci. Bull. 2019, 64,1651. (in Chinese).
[8]
( 王舒, 石磊, 谢沚昂, 王好奇, 蓝琪, 何缘, 严冬, 张杏, 罗惠霞, 科学通报, 2019, 64,1651.)
[9]
Shi, L.; Wang, S.; Lu, T. N.; He, Y.; Yan, D.; Lan, Q.; Xie, Z. A.; Wang, H. Q.; Li, M.-R.; Caro, J.; Luo, H. X. J. Alloy. Compd. 2019, 806,500.
[10]
Luo, H. X.; Klande, T.; Cao, Z. W.; Liang, F. Y.; Wang, H. H.; Caro, J. J. Mater. Chem. A 2014, 2,7780.
[11]
Yang, Z. B.; Ding, W. Z.; Zhang, Y. Y.; Lu, X. G.; Zhang, Y. W.; Shen, P. J. Int. J. Hydrogen Energy 2010, 35,6239.
[12]
Zhang, Y. W.; Liu, J.; Ding, W. Z.; Lu, X. G. Fuel 2011, 90,324.
[13]
Zhang, G. R.; Jin, W. Q.; Xu, N. P. Energy 2018, 4,848.
[14]
Zhu, X. F.; Yang, W. S. Adv. Mater. 2019, 31,1902547.
[15]
Zhu, X. F.; Yang, W. S. AIChE J. 2008, 54,665.
[16]
Zhu, X. F.; Liu, Y.; Cong, Y.; Yang, W. S. Solid State Ionics 2013, 253,57.
[17]
Luo, H. X.; Jiang, H. Q.; Klande, T.; Cao, Z. W.; Liang, F. Y.; Wang, H. H.; Caro, J. Chem. Mater. 2012, 24,2148.
[18]
Zhu, X. F.; Cong, Y.; Yang, W. S. J. Membr. Sci. 2006, 283,38.
[19]
Zhu, X. F.; Wang, H. H.; Cong, Y.; Yang, W. S. Catal. Lett. 2006, 111,179.
[20]
He, Z. Y.; Li, C. Q.; Chen, C. S.; Tong, Y. C.; Luo, T.; Zhan, Z. L. J. Power Sources 2018, 392,200.
[21]
Cao, Z. W.; Jiang, H. Q.; Luo, H. X.; Baumann, S.; Meulenberg, W. A.; Assmann, J.; Mleczko, L.; Liu, Y.; Caro, J. Angew. Chem. Int. Ed. 2013, 52,13794.
[22]
Jiang, H. Q.; Cao, Z. W.; Schirrmeister, S.; Schiestel, T.; Caro, J. Angew. Chem. Int. Ed. 2010, 49,5656.
[23]
Wang, H. H.; Cong, Y.; Yang, W. S. Chem. Commun. 2002, 14,1468.
[24]
Schucker, R. C.; Dimitrakopoulos, G.; Derrickson, K.; Kope?K. K.; Alahmadi, F.; Johnson, J. R.; Shao, L.; Ghoniem, A. F. Ind. Eng. Chem. Res. 2019, 58,7989.
[25]
Préz-Ramírez, J.; Vigeland, B. Angew. Chem. Int. Ed. 2005, 44,1112.
[26]
Wang, H. B.; Gopalan, S.; Pal, U. B. Electrochim. Acta 2011, 56,6989.
[27]
Li, W. P.; Cao, Z. W.; Cai, L. L.; Zhang, L. X.; Zhu, X. F.; Yang, W. S. Energy Environ. Sci. 2017, 10,101.
[28]
Jiang, H. Q.; Wang, H. H.; Werth, S.; Schiestel, T.; Caro, J. Angew. Chem. Int. Ed. 2008, 47,9341.
[29]
Jiang, H. Q.; Wang, H. H.; Liang, F. Y.; Werth, S.; Schirrmeister, S.; Schiestel, T.; Caro, J. Catal. Today 2010, 156,187.
[30]
Wu, X.-Y.; Cai, L. L.; Zhu, X. F.; Ghoniem, A. F.; Yang, W. S. J. Adv. Manuf. Process. 2020, 2,e10059.
[31]
Wu, X.-Y.; Ghoniem, A. F.; Uddi, M. AIChE J. 2016, 62,4427.
[32]
Jia, L. J.; He, G. H.; Zhang, Y.; Caro, J.; Jiang, H. Q. Angew. Chem. Int. Ed. 2021, 60,5204.
[33]
Fang, W.; Steinbach, F.; Cao, Z. W.; Zhu, X. F.; Feldhoff, A. Angew. Chem. Int. Ed. 2016, 55,8648.
[34]
Li, W. P.; Zhu, X. F.; Cao, Z. W.; Wang, W. P.; Yang, W. S. Int. J. Hydrogen Energy 2015, 40,3452.
[35]
Liang, W. Y.; Zhou, H. Y.; Caro, J.; Jiang, H. Q. Int. J. Hydrogen Energy 2018, 43,14478.
[36]
Li, W. P.; Zhu, X. F.; Chen, S. G.; Yang, W. S. Angew. Chem. Int. Ed. 2016, 55,8566.
[37]
Nikolaidis, P.; Poullikkas, A. Renew. Sust. Energ. Rev. 2017, 67,597.
[38]
Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. Catal. Today 2009, 139,244.
[39]
Dincer, I. Int. J. Hydrogen Energy 2012, 37,1954.
[40]
Liang, W. Y.; Cao, Z. W.; He, G. H.; Caro, J.; Jiang, H. Q. ACS Sustain. Chem. Eng. 2017, 5,8657.
[41]
Thursfield, A.; Murugan, A.; Franca, R.; Metcalfe, I. S. Energy Environ. Sci. 2012, 5,7421.
[42]
Kogan, A. Int. J. Hydrogen Energy 1997, 22,481.
[43]
Kogan, A. Int. J. Hydrogen Energy 2000, 25,1043.
[44]
Steinfeld, A. Sol. Energy 2005, 78,603.
[45]
Miller, J.; Allendorf, M.; Diver, R.; Evans, L.; Siegel, N.; Stuecker, J. J. Mater. Sci. 2008, 43,4714.
[46]
Funk, J. Int. J. Hydrogen Energy 2001, 26,185.
[47]
Naito, H.; Arashi, H. Solid State Ionics 1995, 79,366.
[48]
Song, S.-J.; Moon, J.-H.; Ryu, H.-W.; Lee, T.-H.; Dorris, S. E.; Balachandran, U. J. Ceram. Process. Res. 2008, 9,123.
[49]
Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. AIChE J. 2017, 63,1278.
[50]
Cai, L. L.; Hu, S. Q.; Cao, Z. W.; Li, H. B.; Zhu, X. F.; Yang, W. S. AIChE J. 2019, 65,1088.
[51]
Cai, L. L.; Zhu, Y.; Cao, Z. W.; Li, W. P.; Li, H. B.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2020, 594,117463.
[52]
Cai, L. L.; Liu, W.; Cao, Z. W.; Li, H. B.; Cong, Y.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2020, 599,117702.
[53]
Cai, L. L.; Wu, X.-Y.; Zhu, X. F.; Ghoniem, A. F.; Yang, W. S. AIChE J. 2020, 66,e16427.
[54]
Liu, Y. T.; Tan, X. Y.; Li, K. Catal. Rev.-Sci. Eng. 2006, 48,145.
[55]
Sunarso, J.; Hashim, S. S.; Zhu, N.; Zhou, W. Prog. Energy Combust. Sci. 2017, 61,57.
[56]
Plazaola, A. A.; Labella, A. C.; Liu, Y. L.; Porras, N. B.; Tanaka, D. A.P.; Van Sint Annaland, M.; Gallucci, F. Processes 2019, 7,128.
[57]
Hashim, S. M.; Mohamed, A. R.; Bhatia, S. Adv. Colloid Interface Sci. 2010, 160,88.
[58]
Zhang, C.; Sunarso, J.; Liu, S. M. Chem. Soc. Rev. 2017, 46,2941.
[59]
Chen, C. S.; Boukamp, B. A.; Bouwmeester, H. J.M.; Cao, G. Z.; Kruidhof, H.; Winnubst, A. J.A. Solid State Ionics 1995, 76,23.
[60]
Kim, J.; Lin, Y. S. J. Membr. Sci. 2000, 167,123.
[61]
Luo, H. X.; Jiang, H. Q.; Efimov, K.; Wang, H. H.; Caro, J. AIChE J. 2011, 57,2738.
[62]
Garcia-Fayos, J.; Balaguer, M.; Serra, J. M. ChemSusChem 2015, 8,4242.
[63]
Li, W.; Liu, J. J.; Chen, C. S. J. Membr. Sci. 2009, 340,266.
[64]
Bi, X. X.; Meng, X. X.; Liu, P. Y.; Yang, N. T.; Zhu, Z. H.; Ran, R.; Liu, S. M. J. Membr. Sci. 2017, 522,91.
[65]
Cao, Z. W.; Zhu, X. F.; Li, W. P.; Xu, B.; Yang, L. N.; Zhu, X. F. Mater. Lett. 2015, 147,88.
[66]
Zhu, X. F.; Liu, H. Y.; Cong, Y.; Yang, W. S. Chem. Commun. 2012, 48,251.
[67]
Fang, W.; Gao, J. F.; Chen, C. S. Ceram. Int. 2013, 39,7269.
[68]
Wang, Z. T.; Sun, W. P.; Zhu, Z. W.; Liu, T.; Liu, W. ACS Appl. Mater. Interfaces 2013, 5,11038.
[69]
Luo, H. X.; Efimov, K.; Jiang, H. Q.; Feldhoff, A.; Wang, H. H.; Caro, J. Angew. Chem. Int. Ed. 2011, 50,759.
[70]
Xue, J.; Liao, Q.; Wei, Y. Y.; Li, Z.; Wang, H. H. J. Membr. Sci. 2013, 443,124.
[71]
Chen, T.; Zhao, H. L.; Xie, Z. X.; Xu, N. S.; Lu, Y. Ionics 2015, 21,1683.
[72]
Chen, T.; Zhao, H. L.; Xie, Z. X.; Wang, J.; Lu, Y.; Xu, N. S. J. Power Sources 2013, 223,289.
[73]
Du, Z. H.; Ma, Y. H.; Zhao, H. L.; Li, K.; Lu, Y. J. Membr. Sci. 2019, 574,243.
[74]
Zhu, X. F.; Yang, W. S. Chin. J. Catal. 2009, 30,801. (in Chinese).
[74]
( 朱雪峰, 杨维慎, 催化学报, 2009, 30,801.)
[75]
Fang, W.; Liang, F. Y.; Cao, Z. W.; Steinbach, F.; Feldhoff, A. Angew. Chem. Int. Ed. 2015, 54,4847.
[76]
Evdou, A.; Nalbandian, L.; Zaspalis, V. T. J. Membr. Sci. 2008, 325,704.
[77]
Jiang, H. Q.; Liang, F. Y.; Czuprat, O.; Efimov, K.; Feldhoff, A.; Schirrmeister, S.; Schiestel, T.; Wang, H. H.; Caro, J. Chem 2010, 16,7898.
[78]
Lee, T. H.; Park, C. Y.; Dorris, S. E.; Balachandran, U. ECS Trans. 2008, 13,379.
[79]
Balachandran, U.; Lee, T. H.; Dorris, S. E. Int. J. Hydrogen Energy 2007, 32,451.
[80]
Franca, R. V.; Thursfield, A.; Metcalfe, I. S. J. Membr. Sci. 2012, 389,173.
[81]
Park, C. Y.; Azzarello, F. V.; Jacobson, A. J. J. Mater. Chem. 2006, 16,3624.
[82]
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. ECS Trans. 2008, 13,393.
[83]
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. Int. J. Hydrogen Energy 2010, 35,4103.
[84]
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. Int. J. Hydrogen Energy 2013, 38,6450.
[85]
Balachandran, U.; Lee, T. H.; Wang, S.; Dorris, S. E. Int. J. Hydrogen Energy 2004, 29,291.
[86]
Hong, J.; Wang, H.; Gopalan, S.; Pal, U. B. ECS Trans. 2008, 6,1.
[87]
Wang, H.; Gopalan, S.; Pal, U. B. Electrochim. Acta 2011, 56,6989.
[88]
Patrakeev, M. V.; Bahteeva, J. A.; Mitberg, E. B.; Leonidov, I. A.; Kozhevnikov, V. L.; Poeppelmeier, K. R. J. Solid State Chem. 2003, 172,219.
[89]
Tsipis, E. V.; Patrakeev, M. V.; Kharton, V. V.; Yaremchenko, A. A.; Mather, G. C.; Shaula, A. L.; Leonidov, I. A.; Kozhevnikov, V. L.; Frade, J. R. Solid State Sci. 2005, 7,355.
[90]
Patrakeeva, M. V.; Leonidov, I. A.; Kozhevnikov, V. L.; Kharton, V. V. Solid State Sci. 2004, 6,907.
[91]
Leonidov, I. A.; Kozhevnikov, V. L.; Patrakeev, M. V.; Mitberg, E. B.; Poeppelmeier, K. R. Solid State Ionics 2001, 144,361.
[92]
Kharton, V. V.; Yaremchenko, A. A.; Shaula, A. L.; Viskup, A. P.; Marques, F. M.B.; Frade, J. R.; Naumovich, E. N.; Casanova, J. R.; Marozau, I. P. Defect Diffus. Forum 2004, 226-228,141.
[93]
Kozhevnikov, V. L.; Leonidov, I. A.; Bahteeva, J. A.; Patrakeev, M. V.; Mitberg, E. B.; Poeppelmeier, K. R. Chem. Mater. 2004, 16,5014.
[94]
Fowler, D. E.; Haag, J. M.; Boland, C.; Bierschenk, D. M.; Barnett, S. A.; Poeppelmeier, K. R. Chem. Mater. 2014, 26,3113.
[95]
Haag, J. M.; Barnett, S. A.; Richardson Jr., J. W.; Poeppelmeier, K.R. Chem. Mater. 2010, 22,3283.
[96]
Yoo, J.; Kim, S.; Choi, H.; Rhim, Y.; Lim, J.; Lee, S.; Jacobson, A. J. J. Electroceram. 2011, 26,56.
[97]
Cai, L. L.; Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2016, 520,607.
[98]
Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2019, 573,370.
[99]
Midilli, A.; Ay, M.; Dincer, I.; Rosen, M. A. Renew. Sust. Energ. Rev. 2005, 9,255.
[100]
Balat, M. Int. J. Hydrogen Energy 2008, 33,4013.
[101]
Wiltowski, T.; Mondal, K.; Campen, A.; Dasgupta, D.; Konieczny, A. Int. J. Hydrogen Energy 2008, 33,293.
[102]
Schulze-Küppers, F.; Baumann, S.; Meulenberg, W. A.; St?ver, D.; Buchkremer, H.-P. J. Membr. Sci. 2013, 433,121.
[103]
Kaiser, A.; Foghmoes, S. P.; Pe?anac, G.; Malzbender, J.; Chatzichristodoulou, C.; Glasscock, J. A.; Ramachandran, D.; Ni, D. W.; Esposito, V.; S?gaard, M.; Hendriksen, P. V. J. Membr. Sci. 2016, 513,85.
[104]
Baumann, S.; Schulze-Küppers, F.; Roitsch, S.; Betz, M.; Zwick, M.; Pfaff, E. M.; Meulenberg, W. A.; Mayer, J.; St?ver, D. J. Membr. Sci. 2010, 359,102.
[105]
Unije, U.; Mücke, R.; Niehoff, P.; Baumann, S.; Va?en, R.; Guillon, O. J. Membr. Sci. 2017, 524,334.
[106]
Schulze-Küppersa, F.; Unije, U. V.; Blank, H.; Balaguer, M.; Baumann, S.; Mücke, R.; Meulenberg, W. A. J. Membr. Sci. 2018, 564,218.
[107]
Cai, L. L.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. Green Chem. Eng. doi. org/10. 1016/j.gce.2020.11.003.
[108]
Zhu, N.; Dong, X. L.; Liu, Z. K.; Zhang, G. R.; Jin, W. Q.; Xu, N. P. Chem. Commun. 2012, 48,7137.
[109]
Zhou, H. Y.; Liang, W. Y.; Liang, F. Y.; Jiang, H. Q. Catal. Today 2019, 331,2.
[110]
Li, W. P.; Cao, Z. W.; Li, H. B.; Zhu, X. F.; Yang, W. S. Int. J. Hydrogen Energy 2019, 44,4218.
文章导航

/