共价有机框架的合成及其在肿瘤治疗中的应用研究进展
收稿日期: 2020-12-22
网络出版日期: 2021-02-05
基金资助
项目受国家自然科学基金(21975146); 山西省自然科学基金(201801D121035); 山西省高等学校科学研究优秀成果培育项目(2020KJ023); 山西省省筹资金资助回国留学人员科研项目(2020-133)
Research Progress on the Synthesis of Covalent Organic Frameworks and Their Applications in Tumor Therapy
Received date: 2020-12-22
Online published: 2021-02-05
Supported by
National Natural Science Foundation of China(21975146); Natural Science Foundation of Shanxi Province(201801D121035); Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi Province(2020KJ023); Shanxi Scholarship Council of China(2020-133)
共价有机框架(covalent organic frameworks, COFs)是近年来开发的一种由有机单元连接而成的高结晶性多孔聚合物, 由于具有良好的孔隙率、模块性、结晶性和生物相容性等特点在肿瘤治疗中显示出了良好的应用前景. 本综述总结了已报道的COFs制备方法, 包括溶剂热合成法、机械化学合成法、微波合成法、离子热合成法、界面合成法、室温合成法和纳米尺度COFs的合成方法, 并根据对肿瘤作用机理的差异, 将用于肿瘤治疗的COFs纳米载药系统归纳为药物化疗、光热治疗、光动力学治疗和联合治疗. 此外还讨论了COFs在肿瘤治疗领域所面临的主要挑战和发展趋势.
王涛 , 赵璐 , 王科伟 , 白云峰 , 冯锋 . 共价有机框架的合成及其在肿瘤治疗中的应用研究进展[J]. 化学学报, 2021 , 79(5) : 600 -613 . DOI: 10.6023/A20120578
Covalent organic frameworks (COFs) are a class of crystalline porous polymer composed of organic units developed in recent years. Due to their good porosity, modularity, crystallinity and biocompatibility, they show a good application prospect in tumor therapy. The porous channels with adjustable pore sizes of COFs make them become an ideal drug delivery material. In addition, COFs can also be used in photothermal therapy and photodynamic therapy in combination with photothermal agents and photosensitizers. This review systematically introduces the synthesis methods of COFs, including solvothermal synthesis, mechanochemical synthesis, microwave synthesis, ionothermal synthesis, interfacial synthesis, room temperature synthesis and nanoscale synthesis. According to the differences in the mechanism of tumor therapy, the applications of COFs nanocarrier system for tumor therapy were reviewed, including chemotherapy, photothermal therapy, photodynamic therapy and combined therapy, proving that the promising drug carrier can effectively improve the therapeutic effect of nanocarriers on tumors. In addition, the main challenges and development trends of the COFs in the field of tumor therapy are discussed. This review could inspire research to design more effective COFs nano-drug delivery systems and promote the development of tumor therapy.
Key words: covalent organic framework; nanomaterial; tumor therapy; drug carrier
[1] | Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. CA Cancer J. Clin. 2021, 71,7. |
[2] | Lu, H.; Goodell, V.; Disis, M. L. J. Proteome Res. 2008, 7,1388. |
[3] | Xifre-Perez, E.; Guaita-Esteruelas, S.; Baranowska, M.; Pallares, J.; Masana, L.; Marsal, L. F. ACS Appl. Mater. Interfaces 2015, 7,18600. |
[4] | Bai, Y.; Zhang, Z.; Cheng, L.; Wang, R.; Chen, X.; Kong, Y.; Feng, F.; Ahmad, N.; Li, L.; Liu, X. J. Biol. Chem. 2019, 294,9911. |
[5] | Li, R.; Feng, F.; Chen, Z.-Z.; Bai, Y.-F.; Guo, F.-F.; Wu, F.-Y.; Zhou, G. Talanta 2015, 140,143. |
[6] | Zhang, Y.; Bai, Y.; Feng, F.; Shuang, S. Anal. Methods-UK 2016, 8,6131. |
[7] | Bai, Y.; Zhang, H.; Zhao, L.; Wang, Y.; Chen, X.; Zhai, H.; Tian, M.; Zhao, R.; Wang, T.; Xu, H.; Feng, F. Talanta 2020, 221,121451. |
[8] | Gajewski, T. F. Curr. Opin. Immunol. 2012, 6,242. |
[9] | Cao, J.; Huang, D.; Peppas, N. A. Adv. Drug Deliver. Rev. 2020, 167,170. |
[10] | Fang, J.; Islam, W.; Maeda, H. Adv. Drug Deliver. Rev. 2020, 157,142. |
[11] | Gu, Z.; Da Silva, C. G.; Van der Maaden, K.; Ossendorp, F.; Cruz, L. J. Pharmaceutics 2020, 12,1054. |
[12] | Martincic, M.; Tobias, G. Expert Opin. Drug Deliv. 2015, 12,563. |
[13] | Kesharwani, P.; Jain, K.; Jain, N. K. Prog. Polym. Sci. 2014, 39,268. |
[14] | Kwon, H. J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B. H.; Kim, D.; Hyeon, T. Adv. Mater. 2018, 30,e1704290. |
[15] | Wu, M.-X.; Yang, Y.-W. Adv. Mater. 2017, 29,1606134. |
[16] | Huang, H.; Jiang, R.; Feng, Y.; Ouyang, H.; Zhou, N.; Zhang, X.; Wei, Y. Nanoscale 2020, 12,1325. |
[17] | Scicluna, M. C.; Vella-Zarb, L. ACS Appl. Nano Mater. 2020, 3,3097. |
[18] | Sun, T.; Lei, W.; Ma, Y.; Zhang, Y.-B. Chinese J. Chem. 2020, 38,1153. |
[19] | Mei, P.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78,1041. (in Chinese). |
[19] | ( 梅佩, 张媛媛, 冯霄, 化学学报, 2020, 78, 1041.) |
[20] | Yu, G.; Wang, C. Chinese J. Org. Chem. 2020, 40,1437. (in Chinese). |
[20] | ( 于歌, 汪成, 有机化学, 2020, 40,1437.) |
[21] | Jiang, C.; Feng, X.; Wang, B. Acta Chim. Sinica 2020, 78,466. (in Chinese). |
[21] | ( 蒋成浩, 冯霄, 王博, 化学学报, 2020, 78,466.) |
[22] | Liu, J.; Zhang, M.; Wang, N.; Wang, C.; Ma, L. Acta Chim. Sinica 2020, 78,311. (in Chinese). |
[22] | ( 刘建国, 张明月, 王楠, 王晨光, 马隆龙, 化学学报, 2020, 78,311.) |
[23] | Wang, W. Chinese J. Org. Chem. 2020, 40,545. (in Chinese). |
[23] | ( 王为, 有机化学, 2020, 40,545.) |
[24] | Wang, Y.; Liu, H.; Zhu, X. Acta Chim. Sinica 2020, 78,746. (in Chinese). |
[24] | ( 王友付, 刘航海, 朱新远, 化学学报, 2020, 78,746.) |
[25] | Guan, Q.; Zhou, L.-L.; Li, W.-Y.; Li, Y.-A.; Dong, Y.-B. Chem. Eur. J. 2020, 26,5583. |
[26] | Feng, L.; Qian, C.; Zhao, Y. ACS Mater. Lett. 2020, 2,1074. |
[27] | Bhunia, S.; Deo, K. A.; Gaharwar, A. K. Adv. Funct. Mater. 2020, 30,2002046. |
[28] | Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310,1166. |
[29] | El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316,268. |
[30] | Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. J. Am. Chem. Soc. 2015, 137,8352. |
[31] | Vyas, V. S.; Vishwakarma, M.; Moudrakovski, I.; Haase, F.; Savasci, G.; Ochsenfeld, C.; Spatz, J. P.; Lotsch, B. V. Adv. Mater. 2016, 28,8749. |
[32] | Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Chem. Rev. 2020, 120,8814. |
[33] | Ding, X.; Guo, J.; Feng, X.; Honsho, Y.; Guo, J.; Seki, S.; Maitarad, P.; Saeki, A.; Nagase, S.; Jiang, D. Angew. Chem. Int. Ed. 2011, 50,1289. |
[34] | Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. Angew. Chem. Int. Ed. 2013, 52,3770. |
[35] | Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Nat. Commun. 2014, 5,4503. |
[36] | Jiang, Y.; Huang, W.; Wang, J.; Wu, Q.; Wang, H.; Pan, L.; Liu, X. J. Mater. Chem. A 2014, 2,8201. |
[37] | Thote, J.; Aiyappa, H. B.; Kumar, R. R.; Kandambeth, S.; Biswal, B. P.; Shinde, D. B.; Roy, N. C.; Banerjee, R. IUCrJ 2016, 3,402. |
[38] | Wang, K.; Jia, Z.; Bai, Y.; Wang, X.; Hodgkiss, S. E.; Chen, L.; Chong, S. Y.; Wang, X.; Yang, H.; Xu, Y.; Feng, F.; Ward, J. W.; Cooper, A. I. J. Am. Chem. Soc. 2020, 142,11131. |
[39] | Zhu, L. J.; Zhang, Y. B. Molecules 2017, 22,1149. |
[40] | James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41,413. |
[41] | Zhang, P.; Dai, S. J. Mater. Chem. A 2017, 5,16118. |
[42] | Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135,5328. |
[43] | Das, G.; Shinde, D. B.; Kandambeth, S.; Biswal, B. P.; Banerjee, R. Chem. Commun. 2014, 50,12615. |
[44] | Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Chem. Mater. 2009, 21,204. |
[45] | Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24,2357. |
[46] | Ritchie, L. K.; Trewin, A.; Reguera-Galan, A.; Hasell, T.; Cooper, A. I. Micropor. Mesopor. Mat. 2010, 132,132. |
[47] | Vitaku, E.; Dichtel, W. R. J. Am. Chem. Soc. 2017, 139,12911. |
[48] | Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47,3450. |
[49] | Hao, Q.; Zhao, C.; Sun, B.; Lu, C.; Liu, J.; Liu, M.; Wan, L.-J.; Wang, D. J. Am. Chem. Soc. 2018, 140,12152. |
[50] | Matsumoto, M.; Valentino, L.; Stiehl, G. M.; Balch, H. B.; Corcos, A. R.; Wang, F.; Ralph, D. C.; Marinas, B. J.; Dichtel, W. R. Chem 2018, 4,308. |
[51] | Liu, J.; Zan, W.; Li, K.; Yang, Y.; Bu, F.; Xu, Y. J. Am. Chem. Soc. 2017, 139,11666. |
[52] | Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Angew. Chem. Int. Ed. 2019, 58,1376. |
[53] | Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42,548. |
[54] | Ding, S.-Y.; Cui, X.-H.; Feng, J.; Lu, G.; Wang, W. Chem. Commun. 2017, 53,11956. |
[55] | Medina, D. D.; Rotter, J. M.; Hu, Y.; Dogru, M.; Werner, V.; Auras, F.; Markiewicz, J. T.; Knochel, P.; Bein, T. J. Am. Chem. Soc. 2015, 137,1016. |
[56] | Guan, Q.; Wang, G.-B.; Zhou, L.-L.; Li, W.-Y.; Dong, Y.-B. Nanoscale Adv. 2020, 2,3656. |
[57] | Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L.G.; Mas-BallestéR.; Zamora, F. Small 2011, 7,1207. |
[58] | Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135,17853. |
[59] | Wang, K.; Zhang, Z.; Lin, L.; Chen, J.; Hao, K.; Tian, H.; Chen, X. Chem. Mater. 2019, 31,3313. |
[60] | Kong, W.; Wan, J.; Namuangruk, S.; Guo, J.; Wang, C. Sci. Rep. 2018, 8,5529. |
[61] | Dong, J.; Li, X.; Peh, S. B.; Yuan, Y. D.; Wang, Y.; Ji, D.; Peng, S.; Liu, G.; Ying, S.; Yuan, D.; Jiang, J.; Ramakrishna, S.; Zhao, D. Chem. Mater. 2019, 31,146. |
[62] | Smith, B. J.; Parent, L. R.; Overholts, A. C.; Beaucage, P. A.; Bisbey, R. P.; Chavez, A. D.; Hwang, N.; Park, C.; Evans, A. M.; Gianneschi, N. C.; Dichtel, W. R. ACS Central Sci. 2017, 3,58. |
[63] | Das, G.; Prakasam, T.; Addicoat, M. A.; Sharma, S. K.; Ravaux, F.; Mathew, R.; Baias, M.; Jagannathan, R.; Olson, M. A.; Trabolsi, A. J. Am. Chem. Soc. 2019, 141,19078. |
[64] | Matsumoto, M.; Dasari, R. R.; Ji, W.; Feriante, C. H.; Parker, T. C.; Marder, S. R.; Dichtel, W. R. J. Am. Chem. Soc. 2017, 139,4999. |
[65] | Li, M.; Qiao, S.; Zheng, Y.; Andaloussi, Y. H.; Li, X.; Zhang, Z.; Li, A.; Cheng, P.; Ma, S.; Chen, Y. J. Am. Chem. Soc. 2020, 142,6675. |
[66] | Tan, J.; Namuangruk, S.; Kong, W. F.; Kungwan, N.; Guo, J.; Wang, C. C. Angew. Chem. Int. Ed. 2016, 55,13979. |
[67] | Bai, L.; Phua, S. Z.; Lim, W. Q.; Jana, A.; Luo, Z.; Tham, H. P.; Zhao, L.; Gao, Q.; Zhao, Y. Chem. Commun. 2016, 52,4128. |
[68] | Mitra, S.; Sasmal, H. S.; Kundu, T.; Kandambeth, S.; Illath, K.; Diaz Diaz, D.; Banerjee, R. J. Am. Chem. Soc. 2017, 139,4513. |
[69] | Zhang, G.; Li, X.; Liao, Q.; Liu, Y.; Xi, K.; Huang, W.; Jia, X. Nat. Commun. 2018, 9,2785. |
[70] | Liu, S.; Hu, C.; Liu, Y.; Zhao, X.; Pang, M.; Lin, J. Chem. Eur. J. 2019, 25,4315. |
[71] | Lal, S.; Clare, S. E.; Halas, N. J. Acc. Chem. Res. 2008, 41,1842. |
[72] | Gallego, N. C.; Klett, J. W. Carbon 2003, 41,1461. |
[73] | Mi, Z.; Yang, P.; Wang, R.; Unruangsri, J.; Yang, W.; Wang, C.; Guo, J. J. Am. Chem. Soc. 2019, 141,14433. |
[74] | Lan, M.; Zhao, S.; Liu, W.; Lee, C.-S.; Zhang, W.; Wang, P. Adv. Healthc. Mater. 2019, 8,1900132. |
[75] | Kharkwal, G. B.; Sharma, S. K.; Huang, Y.-Y.; Dai, T.; Hamblin, M. R. Lasers Surg. Med. 2011, 43,755. |
[76] | Thakor, A. S.; Gambhir, S. S. CA-Cancer J. Clin. 2013, 63,395. |
[77] | Bhanja, P.; Mishra, S.; Manna, K.; Mallick, A.; Das Saha, K.; Bhaumik, A. ACS Appl. Mater. Interfaces 2017, 9,31411. |
[78] | Zhou, Y.; Liu, S. N.; Hu, C. L.; Cai, L. H.; Pang, M. L. J. Mater. Chem. B 2020, 8,5451. |
[79] | Guan, Q.; Fu, D.-D.; Li, Y.-A.; Kong, X.-M.; Wei, Z.-Y.; Li, W.-Y.; Zhang, S.-J.; Dong, Y.-B. iScience 2019, 14,180. |
[80] | Zhang, Y.; Zhang, L.; Wang, Z.; Wang, F.; Kang, L.; Cao, F.; Dong, K.; Ren, J.; Qu, X. Biomaterials 2019, 223,119462. |
[81] | Zhang, L.; Wang, S. B.; Zhou, Y.; Wang, C.; Zhang, X. Z.; Deng, H. X. Angew. Chem. Int. Ed. 2019, 58,14213. |
[82] | Cai, L.; Hu, C.; Liu, S.; Zhou, Y.; Pang, M.; Lin, J. Sci. China Mater. 2021, 64,488. |
[83] | Wang, P.; Zhou, Z.; Guan, K. S.; Wang, Y. J.; Fu, X. Y.; Yang, Y.; Yin, X.; Song, G. S.; Zhang, X. B.; Tan, W. H. Chem. Sci. 2020, 11,1299. |
[84] | Chen, Z. K.; Liu, L. L.; Liang, R. J.; Luo, Z. Y.; He, H. M.; Wu, Z. H.; Tian, H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. ACS Nano 2018, 12,8633. |
[85] | Li, X. S.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Angew. Chem. Int. Ed. 2018, 57,11522. |
[86] | Reisch, A.; Klymchenko, A. S. Small 2016, 12,1968. |
[87] | Yang, G.; Xu, L.; Chao, Y.; Xu, J.; Sun, X.; Wu, Y.; Peng, R.; Liu, Z. Nat. Commun. 2017, 8,902. |
[88] | Zhang, H.; Li, G.; Liao, C.; Cai, Y.; Jiang, G. J. Mater. Chem. B 2019, 7,2398. |
[89] | Feng, J.; Ren, W.-X.; Kong, F.; Dong, Y.-B. Inorg. Chem. Front. 2021, 8,848. |
[90] | Gan, S.; Tong, X.; Zhang, Y.; Wu, J.; Hu, Y.; Yuan, A. Adv. Funct. Mater. 2019, 29,1902757. |
[91] | Wang, D.; Zhang, Z.; Lin, L.; Liu, F.; Wang, Y.; Guo, Z.; Li, Y.; Tian, H.; Chen, X. Biomaterials 2019, 223,119459. |
[92] | Guan, Q.; Zhou, L.-L.; Li, Y.-A.; Li, W.-Y.; Wang, S.; Song, C.; Dong, Y.-B. ACS Nano 2019, 13,13304. |
[93] | Hu, C.; Zhang, Z.; Liu, S.; Liu, X.; Pang, M. ACS Appl. Mater. Interfaces 2019, 11,23072. |
[94] | Liu, S.; Zhou, Y.; Hu, C.; Cai, L.; Pang, M. ACS Appl. Mater. Interfaces 2020, 12,43456. |
[95] | Wang, K.; Zhang, Z.; Lin, L.; Hao, K.; Chen, J.; Tian, H.; Chen, X. ACS Appl. Mater. Interfaces 2019, 11,39503. |
[96] | Wang, S.-B.; Chen, Z.-X.; Gao, F.; Zhang, C.; Zou, M.-Z.; Ye, J.-J.; Zeng, X.; Zhang, X.-Z. Biomaterials 2020, 234,119772. |
[97] | Guan, Q.; Zhou, L.-L.; Lv, F.-H.; Li, W.-Y.; Li, Y.-A.; Dong, Y.-B. Angew. Chem. Int. Ed. 2020, 59,18042. |
[98] | Benyettou, F.; Das, G.; Nair, A. R.; Prakasam, T.; Shinde, D. B.; Sharma, S. K.; Whelan, J.; Lalatonne, Y.; Traboulsi, H.; Pasricha, R.; Abdullah, O.; Jagannathan, R.; Lai, Z.; Motte, L.; Gándara, F.; Sadler, K. C.; Trabolsi, A. J. Am. Chem. Soc. 2020, 142,18782. |
/
〈 |
|
〉 |