研究论文

分级结构碳纳米笼高效催化苄胺氧化偶联制N-苄烯丁胺

  • 曾誉 ,
  • 吕品 ,
  • 蔡跃进 ,
  • 高福杰 ,
  • 卓欧 ,
  • 吴强 ,
  • 杨立军 ,
  • 王喜章 ,
  • 胡征
展开
  • 1 南京大学化学化工学院 介观化学教育部重点实验室 南京 210023

收稿日期: 2020-11-17

  网络出版日期: 2021-02-05

基金资助

国家重点研发计划(2018YFA0209100); 国家重点研发计划(2017YFA0206500); 国家自然科学基金(21773111); 国家自然科学基金(21972061); 国家自然科学基金(21832003); 国家自然科学基金(52071174)

Hierarchical Carbon Nanocages as Efficient Catalysts for Oxidative Coupling of Benzylamine to N-Benzylidene Benzylamine

  • Yu Zeng ,
  • Pin Lyu ,
  • Yuejin Cai ,
  • Fujie Gao ,
  • Ou Zhuo ,
  • Qiang Wu ,
  • Lijun Yang ,
  • Xizhang Wang ,
  • Zheng Hu
Expand
  • 1 Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
E-mail: ; Tel.: 0086-025-89681910

Received date: 2020-11-17

  Online published: 2021-02-05

Supported by

National Key Research and Development Program of China(2018YFA0209100); National Key Research and Development Program of China(2017YFA0206500); National Natural Science Foundation of China(21773111); National Natural Science Foundation of China(21972061); National Natural Science Foundation of China(21832003); National Natural Science Foundation of China(52071174)

摘要

苄胺氧化偶联制N-苄烯丁胺通常需使用贵金属催化剂, 开发廉价催化剂具有重要研究价值. 本工作以具有大比表面积和丰富表面缺陷的分级结构碳纳米笼(hCNCs)作为无金属催化剂, 在无溶剂、100 ℃和常压O2条件下即可实现苄胺到N-苄烯丁胺的高效转化, 反应8 h的苄胺转化率和N-苄烯丁胺选择性均可达98%, 远优于碳纳米管、还原氧化石墨烯、活性炭等典型碳材料. hCNC700样品循环使用6次后催化性能基本无衰减, 且具有优秀的底物拓展性. hCNC700的优异催化性能源于其超高的比表面积可提供大量的缺陷活性位点, 而独特的分级孔结构十分有利于反应过程中的传质, 使丰富的表面活性位点(缺陷)得以充分利用.

本文引用格式

曾誉 , 吕品 , 蔡跃进 , 高福杰 , 卓欧 , 吴强 , 杨立军 , 王喜章 , 胡征 . 分级结构碳纳米笼高效催化苄胺氧化偶联制N-苄烯丁胺[J]. 化学学报, 2021 , 79(4) : 539 -544 . DOI: 10.6023/A20110527

Abstract

N-Benzylidene benzylamine is an important pharmaceutical intermediate and industrial chemical. Traditionally, it is synthesized via the reaction between benzylamine and benzaldehyde by using Lewis acid catalysts, which usually suffers from the difficulty of product separation and environmental unfriendliness. An alternative approach is the oxidative coupling of benzylamine catalyzed by metal-based catalysts, which is also beset by the contamination of metallic impurities. Thus, the development of green, metal-free and reusable heterogeneous catalysts is highly attractive. Herein, we report an efficient metal-free catalyst, hierarchical carbon nanocages (hCNCs) synthesized by the in-situ magnesium oxide template method with benzene precursor at different temperatures (700, 800 and 900 ℃), for the oxidative coupling of benzylamine to N-benzylidene benzylamine. The hCNCs feature multi-scale hierarchical pore structure, high specific surface area and abundant surface defects. The hCNC700 exhibits excellent catalytic performance for the solvent-free oxidative coupling of benzylamine to N-benzylidene benzylamine under mild conditions (100 ℃, atmospheric O2). Specifically, after reacting for 8 h, both benzylamine conversion and N-benzylidene benzylamine selectivity are larger than 98%, far better than the counterparts of carbon nanotubes, reduced graphene oxide and activated carbon, as well as the reported mesoporous carbon and graphene oxide. The hCNC700 also presents high mass activity, significantly better than the reported carbon-based catalysts. Its catalytic performance is almost unattenuated after 6 times of recycling, exhibiting good stability. By comparison experiments, the catalytic activity of hCNCs results from the intrinsic defects of carbon, and the excellent performance of hCNC700 is mainly attributed to the following aspects: (i) its ultra-high specific surface area can provide abundant surface active sites (defects), (ii) the unique hierarchical pore structure is very conducive to mass transfer in the reaction process, enabling the full utilization of these active sites. In addition, hCNC700 shows good catalytic performance for different substrates, with high catalytic activity (>90% conversion rate for 12 h reaction) and high selectivity (>95%) for oxidative coupling of aromatic methylene amines. This study provides a new avenue for the development of cheap and efficient carbon-based metal-free catalysts.

参考文献

[1]
Chen, B.; Wang, L.; Gao, S. ACS Catal. 2015, 5,5851.
[2]
Qin, J.; Long, Y.; Wu, W.; Zhang, W.; Gao, Z.; Ma, J. J. Catal. 2019, 371,161.
[3]
Cao, X.; Qin, J.; Gou, G.; Li, J.; Wu, W.; Luo, S.; Luo, Y.; Dong, Z.; Ma, J.; Long, Y. Appl. Catal. B Environ. 2020, 272,118958.
[4]
Reeves, J.T.; Visco, M.D.; Marsini, M.A.; Grinberg, N.; Busacca, C.A.; Mattson, A.E.; Senanayake, C.H. Org. Lett. 2015, 17,2442.
[5]
Furukawa, S.; Suga, A.; Komatsu, T. ACS Catal. 2015, 5,1214.
[6]
He, W.; Wang, L.; Sun, C.; Wu, K.; He, S.; Chen, J.; Wu, P.; Yu, Z. Chem. Eur. J. 2011, 17,13308.
[7]
Mielby, J.; Poreddy, R.; Engelbrekt, C.; Kegnæs, S. Chin. J. Catal. 2014, 35,670.
[8]
Zhang, L.L.; Wang, W.T.; Wang, A.Q.; Cui, Y.T.; Yang, X.F.; Huang, Y.Q.; Liu, X.Y.; Liu, W.G.; Son, J.Y.; Oji, H.; Zhang, T. Green Chem. 2013, 15,2680.
[9]
Gong, K.P.; Du, F.; Xia, Z.H.; Durstock, M.; Dai, L.M. Science 2009, 323,760.
[10]
Yang, L.J.; Shui, J.L.; Du, L.; Shao, Y.Y.; Liu, J.; Dai, L.M.; Hu, Z. Adv. Mater. 2019, 31,1804799.
[11]
Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L.H.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.; Qiao, S.Z. Nat. Commun. 2014, 5,3783.
[12]
Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S.Z. Nat. Energy 2016, 1,16130.
[13]
Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Schlögl, R.; Su, D.S. Science 2008, 322,73.
[14]
Yu, H.; Peng, F.; Tan, J.; Hu, X.; Wang, H.; Yang, J.; Zheng, W. Angew. Chem. Int. Ed. 2011, 50,3978.
[15]
Wen, G.; Wu, S.; Li, B.; Dai, C.; Su, D.S. Angew. Chem. Int. Ed. 2015, 54,4105.
[16]
Yang, S.L.; Peng, L.; Huang, P.P.; Wang, X.S.; Sun, Y.B.; Cao, C.Y.; Song, W.G. Angew. Chem. Int. Ed. 2016, 55,4016.
[17]
Su, C.L.; Acik, M.; Takai, K.; Lu, J.; Hao, S.J.; Zheng, Y.; Wu, P.P.; Bao, Q.L.; Enoki, T.; Chabal, Y.J.; Loh, K.P. Nat. Commun. 2012, 3,9.
[18]
Chen, B.; Wang, L.Y.; Dai, W.; Shang, S.S.; Lv, Y.; Gao, S. ACS Catal. 2015, 5,2788.
[19]
Wang, K.Z.; Jiang, P.B.; Yang, M.; Ma, P.; Qin, J.H.; Huang, X.K.; Ma, L.; Li, R. Green Chem. 2019, 21,2448.
[20]
He, H.W.; Li, Z.; Li, K.; Lei, G.Y.; Guan, X.L.; Zhang, G.L.; Zhang, F.B.; Fang, X.B.; Peng, W.C.; Li, Y. ACS Appl. Mater. Interfaces 2019, 11,31844.
[21]
Yang, L.J.; Jiang, S.J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.Z.; Wu, Q.; Ma, J.; Ma, Y.W.; Hu, Z. Angew. Chem. Int. Ed. 2011, 50,7132.
[22]
Zhao, Y.; Yang, L.J.; Chen, S.; Wang, X.Z.; Ma, Y.W.; Wu, Q.; Jiang, Y.F.; Qian, W.J.; Hu, Z. J. Am. Chem. Soc. 2013, 135,1201.
[23]
Jiang, Y.F.; Yang, L.J.; Sun, T.; Zhao, J.; Lyu, Z.Y.; Zhuo, O.; Wang, X.Z.; Wu, Q.; Ma, J.; Hu, Z. ACS Catal. 2015, 5,6707.
[24]
Zhong, G.Y.; Wang, H.J.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75,943. (in Chinese)
[24]
( 钟国玉, 王红娟, 余皓, 彭峰, 化学学报, 2017, 75,943.)
[25]
Li, W.; Wang, D.; Zhang, Y.; Tao, L.; Wang, T.; Zou, Y.; Wang, Y.; Chen, R.; Wang, S. Adv. Mater. 2020, 32,1907879.
[26]
Wu, Q.; Yang, L.J; Wang, X.Z.; Hu, Z. Acc. Chem. Res. 2017, 50,435.
[27]
Zhang, Z.Q.; Ge, C.X.; Chen, Y.G.; Wu, Q.; Yang, L.J.; Wang, X.Z.; Hu, Z. Acta Chim. Sinica 2019, 77,60. (in Chinese)
[27]
( 张志琦, 葛承宣, 陈玉刚, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2019, 77,60.)
[28]
Wu, Q.; Yang, L.J; Wang, X.Z.; Hu, Z. Adv. Mater. 2020, 32,1904177.
[29]
Wu, Q.; Yang, L.J.; Wang, X.Z.; Hu, Z. Sci. China Chem. 2020, 63,665.
[30]
Tang, G.A.; Mao, K.; Zhang, J.; Lyu, P.; Cheng, X.Y.; Wu, Q.; Yang, L.J.; Wang, X.Z.; Hu, Z. Acta Chim. Sinica 2020, 78,444. (in Chinese)
[30]
( 汤功奥, 毛鲲, 张静, 吕品, 程雪怡, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2020, 78,444.)
[31]
Zhang, J.; Tang, G.A.; Zeng, Y.; Wang, B.X.; Liu, L.W.; Wu, Q.; Yang, L.J.; Wang, X.Z.; Hu, Z. Acta Chim. Sinica 2020, 78,572. (in Chinese)
[31]
( 张静, 汤功奥, 曾誉, 王保兴, 刘力玮, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2020, 78,572.)
[32]
Ferrari, A.C.; Robertson, J. Phys. Rev. B 2000, 61,14095.
[33]
Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Nano Lett. 2010, 10,751.
[34]
Ferrari, A.C.; Basko, D.M. Nat. Nanotechnol. 2013, 8,235.
[35]
Bourrat, X.; Langlais, F.; Chollon, G.; Vignoles, G.L. J. Braz. Chem. Soc. 2006, 17,1090.
[36]
Maslova, O.A.; Ammar, M.R.; Guimbretière, G.; Rouzaud, J.N.; Simon, P. Phys. Rev. B 2012, 86,134205.
[37]
Xie, K.; Qin, X.T.; Wang, X.Z.; Wang, Y.N.; Tao, H.S.; Wu, Q.; Yang, L.J.; Hu, Z. Adv. Mater. 2012, 24,347.
[38]
Bu, Y.F.; Sun, T.; Cai, Y.J.; Du, L.Y.; Zhuo, O.; Yang, L.J.; Wu, Q.; Wang, X.Z.; Hu, Z. Adv. Mater. 2017, 29,1700470.
[39]
Grimme, S. Angew. Chem. Int. Ed. 2008, 47,3430.
文章导航

/