综述

水系钠离子电池的研究进展及实用化挑战

  • 马慧 ,
  • 张桓荣 ,
  • 薛面起
展开
  • 1 中国科学院理化技术研究所 北京 100190

马慧, 中国科学院理化技术研究所博士研究生. 2019在山东大学获得硕士学位, 2019年至今于中国科学院理化技术研究所攻读高分子化学与物理博士学位, 主要研究方向为水系二次离子电池.

张桓荣, 中国科学院理化技术研究所硕士研究生. 2019年在河北大学获得学士学位, 2019年至今于中国科学院理化技术研究所攻读高分子化学与物理硕士学位, 主要研究方向为水系二次电池电解液.

薛面起, 中国科学院理化技术研究所研究员. 2012年于中国人民大学获得博士学位. 2012~2014年就职于北京大学新材料学院, 任特聘研究员. 2014~2018年在中国科学院物理研究所工作. 现任中国科学院理化技术研究所研究员, 博士生导师, 主要研究领域为共轭高分子结晶和储能材料与器件.

收稿日期: 2020-10-26

  网络出版日期: 2021-02-22

基金资助

中国科学院A类战略性先导科技专项(XDA21010214); 国家自然科学基金(21875266); 国家自然科学基金(21622407); 北京分子科学国家研究中心资助(BNLMS201909)

Research Progress and Practical Challenges of Aqueous Sodium-Ion Batteries

  • Hui Ma ,
  • Huanrong Zhang ,
  • Mianqi Xue
Expand
  • 1 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2020-10-26

  Online published: 2021-02-22

Supported by

Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21010214); National Natural Science Foundation of China(21875266); National Natural Science Foundation of China(21622407); Beijing National Laboratory for Molecular Sciences(BNLMS201909)

摘要

水系钠离子电池因其安全性高、成本低、环境友好等突出优势近些年来受到了广泛而深入的研究, 在取得巨大进展的同时也逐步开始了产业化进程. 但是与有机体系二次电池相比, 水系钠离子电池仍然极大地受限于电解液较窄的电化学稳定窗口和电极材料较差的循环稳定性. 迄今为止, 如何解决上述问题依然是这一领域发展的关键. 本综述主要概述了水系钠离子电池电极材料、电解液以及集流体的最新进展, 分析了开发高性能水系钠离子电池的挑战和可能的解决策略, 并进一步讨论了水系钠离子电池的发展前景.

本文引用格式

马慧 , 张桓荣 , 薛面起 . 水系钠离子电池的研究进展及实用化挑战[J]. 化学学报, 2021 , 79(4) : 388 -405 . DOI: 10.6023/A20100492

Abstract

Aqueous sodium-ion batteries recently have been widely and deeply studied in the energy field due to their prominent advantages such as high safety, low cost and environmental friendliness. Remarkable progresses of aqueous sodium-ion batteries gradually encourage their process of industrialization. However, compared with the organic secondary ion batteries, the development of aqueous sodium-ion batteries is limited by the narrow stable voltage window of the electrolyte and the poor cycle stability of the electrode material. How to solve these problems is still the key to the development of aqueous sodium-ion batteries. The latest developments in electrode materials, electrolyte and current collector of aqueous sodium-ion batteries, as well as challenges and possible solutions for developing high-performance aqueous sodium-ion batteries are mainly summarized in this review. Furthermore, the development prospects of aqueous sodium-ion batteries are discussed.

参考文献

[1]
Larcher, D.; Tarascon, J.M. Nature Chem. 2014, 7,19.
[2]
Song, X.; Li, J.; Li, Z.; Li, X.; Ding, Y.; Xiao, Q.; Lei, G. Acta Chim. Sinica 2019, 77,625. (in Chinese)
[2]
( 宋学霞, 李继成, 李朝晖, 李喜飞, 丁燕怀, 肖启振, 雷钢铁, 化学学报, 2019, 77,625.)
[3]
Wang, X.; Zhang, Y.; Ma, L.; Wei, L. Acta Chim. Sinica 2019, 77,24. (in Chinese)
[3]
( 王晓钰, 张渝, 马磊, 魏良明, 化学学报, 2019, 77,24.)
[4]
Kang, S.; Fan, S.; Liu, Y.; Wei, Y.; Li, Y.; Fang, J.; Meng, C. Acta Chim. Sinica 2019, 77,647. (in Chinese)
[4]
( 康树森, 范少聪, 刘岩, 魏彦存, 李营, 房金刚, 孟垂舟, 化学学报, 2019, 77,647.)
[5]
Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2,830.
[6]
Bin, D.; Wang, F.; Tamirat, A.G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Adv. Energy Mater. 2018, 8,1703008.
[7]
Liu, M.; Ao, H.; Jin, Y.; Hou, Z.; Zhang, X.; Zhu, Y.; Qian, Y. Mater. Today Energy 2020, 17,100432.
[8]
Peng, Z.; Ding, H.; Chen, R.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77,681. (in Chinese)
[8]
( 彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77,681.)
[9]
Wang, X.; Chen, D.; Yang, Z.; Zhang, X.; Wang, C.; Chen, J.; Zhang, X.; Xue, M. Adv. Mater. 2016, 28,8645.
[10]
Kim, H.; Hong, J.; Park, K.Y.; Kim, H.; Kim, S.W.; Kang, K. Chem. Rev. 2014, 114,11788.
[11]
Deng, W.; Wang, X.; Liu, C.; Li, C.; Chen, J.; Zhu, N.; Li, R.; Xue, M. Energy Storage Mater. 2019, 20,373.
[12]
Li, W.; Dahn, J.R.; Wainwright, D.S. Science 1994, 264,1115.
[13]
Liu, C.; Wang, X.; Deng, W.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Angew. Chem. Int. Ed. 2018, 57,7046.
[14]
Zhang, L.; Wang, W.; Zhang, H.; Han, S.; Wang, L. Acta Chim. Sinica 2021, 79,158. (in Chinese)
[14]
( 张璐, 王文凤, 张洪明, 韩树民, 王利民, 化学学报, 2021, 79,158.)
[15]
Li, P.; Liu, J.; Sun, W.; Tao, Z.; Chen, J. Acta Chim. Sinica 2018, 76,286. (in Chinese)
[15]
( 李攀, 刘建, 孙惟袆, 陶占良, 陈军, 化学学报, 2018, 76,286.)
[16]
Yang, H.; Qian, J. J. Inorg. Mater. 2013, 28,1165. (in Chinese)
[16]
( 杨汉西, 钱江锋, 无机材料学报, 2013, 28,1165.)
[17]
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114,11636.
[18]
Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Chem. Soc. Rev. 2020, 49,180.
[19]
Liu, C.; Wang, X.; Deng, W.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Angew. Chem. Int. Ed. 2018, 57,7046.
[20]
Wu, X.Y.; Sun, M.Y.; Shen, Y.F.; Qian, J.F.; Cao, Y.L.; Ai, X.P.; Yang, H.X. ChemSusChem 2014, 7,407.
[21]
Zang, X.; Wang, X.; Liu, H.; Ma, X.; Wang, W.; Ji, J.; Chen, J.; Li, R.; Xue, M. ACS Appl. Mater. Interfaces 2020, 12,9347.
[22]
Minakshi, M.; Ralph, D. ECS Trans. 2013, 45,95.
[23]
Wang, L.; Ebina, Y.; Takada, K.; Sasaki, T. Chem. Commun. 2004,1074.
[24]
Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112,4406.
[25]
Ragupathy P.; Vasan H. N.; Munichandraiah N. J. Electrochem. Soc. 2008, 155,A34.
[26]
Tarascon, J.; Guyomard, D.; Wilkens, B.; McKinnon, W.R.; Barboux, P. Solid State Ionics 1992, 57,113.
[27]
Minakshi, M. Mater. Sci. Eng., B 2012, 177,1788.
[28]
Whitacre, J.F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S.E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D. J. Power Sources 2012, 213,255.
[29]
Ju, X.; Huang, H.; Zheng, H.; Deng, P.; Li, S.; Qu, B.; Wang, T. J. Power Sources 2018, 395,395.
[30]
Ke, L.; Dong, J.; Lin, B.; Yu, T.; Wang, H.; Zhang, S.; Deng, C. Nanoscale 2017, 9,4183.
[31]
Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Chem 2017, 3,348.
[32]
Li, Z.; Young, D.; Xiang, K.; Carter, W.C.; Chiang, Y.M. Adv. Energy Mater. 2013, 3,290.
[33]
Deng, C.; Zhang, S.; Dong, Z.; Shang, Y. Nano Energy 2014, 4,49.
[34]
Zhao, B.; Wang, Q.; Zhang, S.; Deng, C. J. Mater. Chem. A 2015, 3,12089.
[35]
Gu, T.; Zhou, M.; Liu, M.; Wang, K.; Cheng, S.; Jiang, K. RSC Adv. 2016, 6,53319.
[36]
Yin, F.; Liu, Z.; Yang, S.; Shan, Z.; Zhao, Y.; Feng, Y.; Zhang, C.; Bakenov, Z. Nanoscale Res. Lett. 2017, 12,569.
[37]
Lim, H.; Jung, J.H.; Park, Y.M.; Lee, H.N.; Kim, H.J. Appl. Surf. Sci. 2018, 446,131.
[38]
Yee, G.; Shanbhag, S.; Wu, W.; Carlisle, K.; Chang, J.; Whitacre, J.F. Electrochem. Commun. 2018, 86,104.
[39]
Wang, Y.; Feng, Z.; Laul, D.; Zhu, W.; Provencher, M.; Trudeau, M.L.; Guerfi, A.; Zaghib, K. J. Power Sources 2018, 374,211.
[40]
Chua, R.; Cai, Y.; Kou, Z.K.; Satish, R.; Ren, H.; Chan, J.J.; Zhang, L.; Morris, S.A.; Bai, J.; Srinivasan, M. Chem. Eng. J. 2019, 370,742.
[41]
Whitacre, J.F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463.
[42]
Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y.S.; Yang, W.; Kang, K.; Li, H.; Yang, X.Q.; Chen, L.; Huang, X. Nat. Commun. 2015, 6,6401.
[43]
Wang, Y.; Mu, L.; Liu, J.; Yang, Z.; Yu, X.; Gu, L.; Hu, Y.S.; Li, H.; Yang, X.Q.; Chen, L.; Huang, X. Adv. Energy Mater. 2015, 5,1501005.
[44]
Qiu, Y.; Yu, Y.; Xu, J.; Liu, Y.; Ou, M.; Sun, S.; Wei, P.; Deng, Z.; Xu, Y.; Fang, C.; Li, Q.; Han, J.; Huang, Y. J. Mater. Chem. A 2019, 7,24953.
[45]
Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M.A.; Cresce, A.V.; Wang, F.; Yang, C.; Hu, Y.S.; Xu, K.; Wang, C. Adv. Energy Mater. 2017, 7,1701189.
[46]
Zhang, F.; Li, W.; Xiang, X.; Sun, M. J. Electroanal. Chem. 2017, 802,22.
[47]
Zhang, Y.; Ye, K.; Cheng, K.; Wang, G.; Cao, D. Electrochim. Acta 2014, 148,195.
[48]
Karikalan, N.; Karuppiah, C.; Chen, S.-M.; Velmurugan, M.; Gnanaprakasam, P. Chem. Eur. J. 2017, 23,2379.
[49]
Zhang, Y.; An, Y.; Jiang, J.; Dong, S.; Wu, L.; Fu, R.; Dou, H.; Zhang, X. Energy Technol. 2018, 6,2146.
[50]
Shan, X.; Guo, F.; Charles, D.S.; Lebens-Higgins, Z.; Abdel Razek, S.; Wu, J.; Xu, W.; Yang, W.; Page, K.L.; Neuefeind, J.C.; Feygenson, M.; Piper, L.F. J.; Teng, X. Nat. Commun. 2019, 10,4975.
[51]
Liu, Y.; Zhang, B.H.; Xiao, S.Y.; Liu, L.L.; Wen, Z.B.; Wu, Y.P. Electrochim. Acta 2014, 116,512.
[52]
Liu, Y.; Qiao, Y.; Zhang, W.; Wang, H.; Chen, K.; Zhu, H.; Li, Z.; Huang, Y. J. Mater. Chem. A 2015, 3,7780.
[53]
Zhang, X.; Hou, Z.; Li, X.; Liang, J.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2016, 4,856.
[54]
Qu, Q.T.; Shi, Y.; Tian, S.; Chen, Y.H.; Wu, Y.P.; Holze, R. J. Power Sources 2009, 194,1222.
[55]
Hou, Z.; Li, X.; Liang, J.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2015, 3,1400.
[56]
Liu, Y.; Qiao, Y.; Lou, X.; Zhang, X.; Zhang, W.; Huang, Y. ACS Appl. Mater. Interfaces 2016, 8,14564.
[57]
Liu, Y.; Qiao, Y.; Zhang, W.; Xu, H.; Li, Z.; Shen, Y.; Yuan, L.; Hu, X.; Dai, X.; Huang, Y. Nano Energy 2014, 5,97.
[58]
Liu, Y.; Qiao, Y.; Zhang, W.; Huang, Y. 224th Electrochemical Society Interface Meeting, San Francisco, The Electrochemical Society, 2013, Abstract #382.
[59]
He, B.; Man, P.; Zhang, Q.; Wang, C.; Zhou, Z.; Li, C.; Wei, L.; Yao, Y. Small 2019, 15,1905115.
[60]
Wu, X.; Sun, M.; Guo, S.; Qian, J.; Liu, Y.; Cao, Y.; Ai, X.; Yang, H. ChemNanoMat 2015, 1,188.
[61]
Shao, T.; Li, C.; Liu, C.; Deng, W.; Wang, W.; Xue, M.; Li, R. J. Mater. Chem. A 2019, 7,1749.
[62]
Shao, M.; Wang, B.; Liu, M.; Wu, C.; Ke, F.S.; Ai, X.; Yang, H.; Qian, J. ACS Appl. Energy Mater. 2019, 2,5809.
[63]
Nakamoto, K.; Sakamoto, R.; Ito, M.; Kitajou, A.; Okada, S. Electrochemistry 2017, 85,179.
[64]
Hou, Z.; Zhang, X.; Ao, H.; Liu, M.; Zhu, Y.; Qian, Y. Mater. Today Energy 2019, 14,100337.
[65]
Nakamoto, K.; Sakamoto, R.; Sawada, Y.; Ito, M.; Okada, S. Small Methods 2018,1800220.
[66]
Han, J.; Zhang, H.; Varzi, A.; Passerini, S. ChemSusChem 2018, 11,3704.
[67]
Hou, Z.; Zhang, X.; Li, X.; Zhu, Y.; Liang, J.; Qian, Y. J. Mater. Chem. A 2017, 5,730.
[68]
Qiu, S.; Wu, X.; Wang, M.; Lucero, M.; Wang, Y.; Wang, J.; Yang, Z.; Xu, W.; Wang, Q.; Gu, M.; Wen, J.; Huang, Y.; Xu, Z.J.; Feng, Z. Nano Energy 2019, 64,103941.
[69]
Jiang, L.; Liu, L.; Yue, J.; Zhang, Q.; Zhou, A.; Borodin, O.; Suo, L.; Li, H.; Chen, L.; Xu, K.; Hu, Y.S. Adv. Mater. 2019, 32,1904427.
[70]
Bi, H.; Wang, X.; Liu, H.; He, Y.; Wang, W.; Deng, W.; Ma, X.; Wang, Y.; Rao, W.; Chai, Y.; Ma, H.; Li, R.; Chen, J.; Wang, Y.; Xue, M. Adv. Mater. 2020, 32,2000074.
[71]
Fernández-Ropero, A.J.; Piernas-Muñoz, M.J.; Castillo-Martínez, E.; Rojo, T.; Casas-Cabanas, M. Electrochim. Acta 2016, 210,352.
[72]
Wu, X.; Cao, Y.; Ai, X.; Qian, J.; Yang, H. Electrochem. Commun. 2013, 31,145.
[73]
Shen, L.; Jiang, Y.; Liu, Y.; Ma, J.; Sun, T.; Zhu, N. Chem. Eng. J. 2020, 388,124228.
[74]
Wang, B.; Wang, X.; Liang, C.; Yan, M.; Jiang, Y. ChemElectroChem 2019, 6,4848.
[75]
Li, W.; Zhang, F.; Xiang, X.; Zhang, X. ChemElectroChem 2018, 5,350.
[76]
Baster, D.; Oveisi, E.; Mettraux, P.; Agrawal, S.; Girault, H.H. Chem. Commun. 2019, 55,14633.
[77]
Paulitsch, B.; Yun, J.; Bandarenka, A.S. ACS Appl. Mater. Interfaces 2017, 9,8107.
[78]
Niu, L.; Chen, L.; Zhang, J.; Jiang, P.; Liu, Z. J. Power Sources 2018, 380,135.
[79]
Wessells, C.D.; Peddada, S.V.; Huggins, R.A.; Cui, Y. Nano Lett. 2011, 11,5421.
[80]
Wessells, C.D.; McDowell, M.T.; Peddada, S.V.; Pasta, M.; Huggins, R.A.; Cui, Y. ACS Nano 2012, 6,1688.
[81]
Pasta, M.; Wessells, C.D.; Liu, N.; Nelson, J.; McDowell, M.T.; Huggins, R.A.; Toney, M.F.; Cui, Y. Nat. Commun. 2014, 5,3007.
[82]
Jiang, P.; Lei, Z.; Chen, L.; Shao, X.; Liang, X.; Zhang, J.; Wang, Y.; Zhang, J.; Liu, Z.; Feng, J. ACS Appl. Mater. Interfaces 2019, 11,28762.
[83]
Zhang, Q.; Man, P.; He, B.; Li, C.; Li, Q.; Pan, Z.; Wang, Z.; Yang, J.; Wang, Z.; Zhou, Z.; Lu, X.; Niu, Z.; Yao, Y.; Wei, L. Nano Energy 2020, 67,104212.
[84]
Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113,6552.
[85]
Yang, J.; Li, D.; Wang, X.; Zhang, X.; Xu, J.; Chen, J. Energy Storage Mater. 2020, 24,694.
[86]
Zhang, Q.; Liao, C.; Zhai, T.; Li, H. Electrochim. Acta 2016, 196,470.
[87]
Song, W.; Ji, X.; Zhu, Y.; Zhu, H.; Li, F.; Chen, J.; Lu, F.; Yao, Y.; Banks, C.E. ChemElectroChem 2014, 1,821.
[88]
Zhang, L.; Huang, T.; Yu, A. J. Alloys Compd. 2015, 646,522.
[89]
Lei, P.; Wang, Y.; Zhang, F.; Wan, X.; Xiang, X. ChemElectroChem 2018, 5,2482.
[90]
Fernández-Ropero, A.J.; Saurel, D.; Acebedo, B.; Rojo, T.; Casas-Cabanas, M. J. Power Sources 2015, 291,40.
[91]
Jeong, S.; Kim, B.H.; Park, Y.D.; Lee, C.Y.; Mun, J.; Tron, A. J. Alloys Compd. 2019, 784,720.
[92]
Vujković, M.; Mentus, S. J. Power Sources 2014, 247,184.
[93]
Jung, Y.H.; Lim, C.H.; Kim, J.H.; Kim, D.K. RSC Adv. 2014, 4,9799.
[94]
Nakamoto, K.; Kano, Y.; Kitajou, A.; Okada, S. J. Power Sources 2016, 327,327.
[95]
Lee, M.H.; Kim, S.J.; Chang, D.; Kim, J.; Moon, S.; Oh, K.; Park, K.Y.; Seong, W.M.; Park, H.; Kwon, G.; Lee, B.; Kang, K. Mater. Today 2019, 29,26.
[96]
Fernández-Ropero, A.J.; Zarrabeitia, M.; Reynaud, M.; Rojo, T.; Casas-Cabanas, M. J. Phys. Chem. C 2017, 122,133.
[97]
Liu, S.; Wang, L.; Liu, J.; Zhou, M.; Nian, Q.; Feng, Y.; Tao, Z.; Shao, L. J. Mater. Chem. A 2019, 7,248.
[98]
Reber, D.; Kühnel, R.S.; Battaglia, C. ACS Mater. Lett. 2019, 1,44.
[99]
Kumar, P.R.; Jung, Y.H.; Lim, C.H.; Kim, D.K. J. Mater. Chem. A 2015, 3,6271.
[100]
Kumar, P.R.; Jung, Y.H.; Moorthy, B.; Kim, D.K. J. Electrochem. Soc. 2016, 163,A1484.
[101]
Sharma, L.; Nakamoto, K.; Sakamoto, R.; Okada, S.; Barpanda, P. ChemElectroChem 2019, 6,444.
[102]
Jung, Y.H.; Hong, S.T.; Kim, D.K. J. Electrochem. Soc. 2013, 160,A897.
[103]
Nwanya, A.C.; Ndipingwi, M.M.; Ikpo, C.O.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. J. Electroanal. Chem. 2020, 858,113809.
[104]
Qu, Q.T.; Liu, L.L.; Wu, Y.P.; Holze, R. Electrochim. Acta 2013, 96,8.
[105]
Bae, K.L.; Kim, K. Int. J. Energy Res. 2017, 41,1335.
[106]
Long, H.; Zeng, W.; Wang, H.; Qian, M.; Liang, Y.; Wang, Z. Adv. Sci. 2018, 5,1700634.
[107]
Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. Chem. Commun. 2009,836.
[108]
Zhang, L.; Wang, X.; Deng, W.; Zang, X.; Liu, C.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Nanoscale 2018, 10,958.
[109]
Shiprath, K.; Manjunatha, H.; Babu Naidu, K.C.; Khan, A.; Asiri, A.M.; Boddula, R. Mater. Chem. Phys. 2020, 248,122952.
[110]
Li, X.; Zhu, X.; Liang, J.; Hou, Z.; Wang, Y.; Lin, N.; Zhu, Y.; Qian, Y. J. Electrochem. Soc. 2014, 161,A1181.
[111]
Park, S.I.; Gocheva, I.; Okada, S.; Yamaki, J.I. J. Electrochem. Soc. 2011, 158,A1067.
[112]
Lei, P.; Liu, K.; Wan, X.; Luo, D.; Xiang, X. Chem. Commun. 2019, 55,509.
[113]
Pang, G.; Yuan, C.; Nie, P.; Ding, B.; Zhu, J.; Zhang, X. Nanoscale 2014, 6,6328.
[114]
Wu, W.; Yan, J.; Wise, A.; Rutt, A.; Whitacre, J.F. 2014, 161,A561.
[115]
Mohamed, A.I.; Sansone, N.J.; Kuei, B.; Washburn, N.R.; Whitacre, J.F. J. Electrochem. Soc. 2015, 162,A2201.
[116]
Liu, Z.; An, Y.; Pang, G.; Dong, S.; Xu, C.; Mi, C.; Zhang, X. Chem. Eng. J. 2018, 353,814.
[117]
Qin, H.; Song, Z.P.; Zhan, H.; Zhou, Y.H. J. Power Sources 2014, 249,367.
[118]
Zhao, Q.; Lu, Y.; Chen, J. Adv. Energy Mater. 2017, 7,1601792.
[119]
Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.Y.; Liu, P.; Facchetti, A.; Yao, Y. Nature Mater. 2017, 16,841.
[120]
Zhong, L.; Lu, Y.; Li, H.; Tao, Z.; Chen, J. ACS Sustainable Chem. Eng. 2018, 6,7761.
[121]
Demir Cakan, R.; Palacin, M.R.; Croguennec, L. J. Mater. Chem. A 2019, 7,20519.
[122]
Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350,938.
[123]
Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J.F. J. Electrochem. Soc. 2015, 162,A803.
[124]
Eftekhari, A. Adv. Energy Mater. 2018, 8,1801156.
[125]
Che, H.; Chen, S.; Xie, Y.; Wang, H.; Amine, K.; Liao, X.Z.; Ma, Z.F. Energy Environ. Sci. 2017, 10,1075.
[126]
Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. Chem. Rev. 2020, 120,6783.
[127]
Kühnel, R.S.; Reber, D.; Battaglia, C. ACS Energy Lett. 2020, 5,346.
[128]
Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1,16129.
[129]
Yamada, Y.; Yamada, A. Chem. Lett. 2017, 46,1056.
[130]
Zheng, Q.; Miura, S.; Miyazaki, K.; Ko, S.; Watanabe, E.; Okoshi, M.; Chou, C.P.; Nishimura, Y.; Nakai, H.; Kamiya, T.; Honda, T.; Akikusa, J.; Yamada, Y.; Yamada, A. Angew. Chem. Int. Ed. 2019, 58,14202.
[131]
Wojciechowski, J.; Kolanowski, Ł.; Bund, A.; Lota, G. J. Power Sources 2017, 368,18.
[132]
Chen, Q.; Nuli, Y.; Yang, J.; Kailibinuer, K.; Wang, J. Acta Phys. -Chim. Sin. 2012, 28,2625. (in Chinese)
[132]
( 陈强, 努丽燕娜, 杨军, 凯丽比努尔·克日木, 王久林, 物理化学学报, 2012, 28,2625.)
[133]
Gheytani, S.; Liang, Y.; Jing, Y.; Xu, J.Q.; Yao, Y. J. Mater. Chem. A 2016, 4,395.
[134]
Kühnel, R.S.; Reber, D.; Remhof, A.; Figi, R.; Bleiner, D.; Battaglia, C. Chem. Commun. 2016, 52,10435.
[135]
Wang, M.; Tang, M.; Chen, S.; Ci, H.; Wang, K.; Shi, L.; Lin, L.; Ren, H.; Shan, J.; Gao, P.; Liu, Z.; Peng, H. Adv. Mater. 2017, 29,1703882.
[136]
Wen, Y.H.; Shao, L.; Zhao, P.C.; Wang, B.Y.; Cao, G.P.; Yang, Y.S. J. Mater. Chem. A 2017, 5,15752.
[137]
Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V.A.; Li, T.; Hu, L. Nano Lett. 2016, 16,3616.
[138]
Zhao, Y.; Hong, M.; Bonnet Mercier, N.; Yu, G.; Choi, H.C.; Byon, H.R. Nano Lett. 2014, 14,1085.
[139]
Liu, T.; Cheng, X.; Yu, H.; Zhu, H.; Peng, N.; Zheng, R.; Zhang, J.; Shui, M.; Cui, Y.; Shu, J. Energy Storage Mater. 2019, 18,68.
[140]
Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods 2019, 3,1800272.
[141]
Luo, J.Y.; Cui, W.J.; He, P.; Xia, Y.Y. Nature Chem. 2010, 2,760.
[142]
Li, W.; Dahn, J.R.; Wainwright, D.S. Science 1994, 264,1115.
[143]
Ren, X.; Li, D.; Zhao, Z.; Chen, G.; Zhao, K.; Kong, X.; Li, T. Acta Chim. Sinica 2020, 78,1268. (in Chinese)
[143]
( 任旭强, 李东林, 赵珍珍, 陈光琦, 赵坤, 孔祥泽, 李童心, 化学学报, 2020, 78,1268.)
[144]
Gao, H.; Goodenough, J.B. Angew. Chem. Int. Ed. 2016, 55,12768.
[145]
Zhang, F.; Li, W.; Xiang, X.; Sun, M. Chem. Eur. J. 2017, 23,12944.
[146]
He, J.; Zhang, H.; Liu, X.; Lu, X. Acta Chim. Sinica 2020, 78,1069. (in Chinese)
[146]
( 何锦俊, 张昊喆, 刘晓庆, 卢锡洪, 化学学报, 2020, 78,1069.)
[147]
Li, Z.; Wang, Z.; Ban, L.; Wang, J.; Lu, S. Acta Chim. Sinica 2019, 77,1115. (in Chinese)
[147]
( 李钊, 王忠, 班丽卿, 王建涛, 卢世刚, 化学学报, 2019, 77,1115.)
[148]
Shan, X.; Charles, D.S.; Lei, Y.; Qiao, R.; Wang, G.; Yang, W.; Feygenson, M.; Su, D.; Teng, X. Nat. Commun. 2016, 7,13370.
[149]
Chen, L.; Li, W.; Guo, Z.; Wang, Y.; Wang, C.; Che, Y.; Xia, Y. J. Electrochem. Soc. 2015, 162,A1972.
[150]
Mohamed, A.I.; Whitacre, J.F. Electrochim. Acta 2017, 235,730.
[151]
Liu, S.; Shao, L.Y.; Zhang, X.J.; Tao, Z.L.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34,581. (in Chinese)
[151]
( 刘双, 邵涟漪, 张雪静, 陶占良, 陈军, 物理化学学报, 2018, 34,581.)
[152]
Suo, L.; Oh, D.; Lin, Y.; Zhuo, Z.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z.; Kim, H.C.; Qi, Y.; Yang, W.; Pan, F.; Li, J.; Xu, K.; Wang, C. J. Am. Chem. Soc. 2017, 139,18670.
[153]
Stojković, I.B.; Cvjetićanin, N.D.; Mentus, S.V. Electrochem. Commun. 2010, 12,371.
[154]
Jin, S.; Jiang, Y.; Ji, H.; Yu, Y. Adv. Mater. 2018, 30,1802014.
[155]
Yue, Y.; Liang, H. Small Methods 2018, 2,1800056.
[156]
Wang, S.; Fan, X.; Cui, Y.; Gou, L.; Wang, X.; Li, D. Acta Chim. Sinica 2019, 77,551. (in Chinese)
[156]
( 王珊, 樊小勇, 崔宇, 苟蕾, 王新刚, 李东林, 化学学报, 2019, 77,551.)
[157]
Luo, W.; Hayden, J.; Jang, S.-H.; Wang, Y.; Zhang, Y.; Kuang, Y.; Wang, Y.; Zhou, Y.; Rubloff, G.W.; Lin, C.F.; Hu, L. Adv. Energy Mater. 2018, 8,1702615.
[158]
Li, C.; Wang, X.; Deng, W.; Liu, C.; Chen, J.; Li, R.; Xue, M. ChemElectroChem 2018, 5,3887.
[159]
Zheng, J.; Tan, G.; Shan, P.; Liu, T.; Hu, J.; Feng, Y.; Yang, L.; Zhang, M.; Chen, Z.; Lin, Y.; Lu, J.; Neuefeind, J.C.; Ren, Y.; Amine, K.; Wang, L.W.; Xu, K.; Pan, F. Chem 2018, 4,2872.
[160]
Wang, X.; Ding, J.; Chen, J.; Xue, M. J. Power Sources 2019, 441,227190.
[161]
Wang, F.; Borodin, O.; Ding, M.S.; Gobet, M.; Vatamanu, J.; Fan, X.; Gao, T.; Eidson, N.; Liang, Y.; Sun, W.; Greenbaum, S.; Xu, K.; Wang, C. Joule 2018, 2,927.
[162]
McEldrew, M.; Goodwin, Z.A. H.; Kornyshev, A.A.; Bazant, M.Z. J. Phys. Chem. Lett. 2018, 9,5840.
文章导航

/