综述

热活化延迟荧光蓝光小分子取代基效应的研究进展

  • 周涛 ,
  • 钱越 ,
  • 王宏健 ,
  • 冯全友 ,
  • 解令海 ,
  • 黄维
展开
  • a 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室 南京 210023
    b 西北工业大学柔性电子前沿科学中心 柔性电子材料与器件工信部重点实验室 西安 710072

周涛, 南京邮电大学信息材料与纳米技术研究院/材料科学与工程学院2019级研究生, 导师为冯全友副教授. 主要从事有机发光材料的设计合成及其性能研究.

冯全友, 南京邮电大学材料科学与工程学院副教授、硕士生导师. 2005至2009年就读于西南大学化学与化工学院, 获得学士学位. 2009至2014年就读于复旦大学先进材料实验室, 获得博士学位 (导师: 周刚教授、王忠胜教授). 随后加入南京邮电大学信息材料与纳米技术研究院/材料科学与工程学院. 2015至2017年在弗吉尼亚理工大学从事博士后研究 (导师: Tong Rong教授). 目前主要研究方向为有机/聚合物宽带隙半导体材料及其光电子器件.

解令海, 南京邮电大学信息材料与纳米技术研究院/材料科学与工程学院教授、博士生导师, 国家自然科学基金优秀青年科学基金获得者. 2000年和2003年分别获得东北师范大学学士学位和汕头大学硕士学位. 2003至2006年就读于复旦大学先进材料研究院, 获得博士学位(导师: 黄维院士). 长期从事多功能有机半导体材料的设计合成及其在有机发光、有机激光、有机存储和忆阻器等领域的应用研究.

收稿日期: 2021-01-13

  网络出版日期: 2021-02-26

基金资助

项目受江苏省自然科学基金(BK20190090); 国家自然科学基金(21774061)

Recent Advances in Substituent Effects of Blue Thermally Activated Delayed Fluorescence Small Molecules

  • Tao Zhou ,
  • Yue Qian ,
  • Hongjian Wang ,
  • Quanyou Feng ,
  • Linghai Xie ,
  • Wei Huang
Expand
  • a State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
    b Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-01-13

  Online published: 2021-02-26

Supported by

Natural Science Foundation of Jiangsu Province(BK20190090); National Natural Science Foundation of China(21774061)

摘要

近年来, 作为第三代有机发光二极管(organic light-emitting diodes, OLED)发光材料的热活化延迟荧光(thermally activated delayed fluorescence, TADF)材料受到了学术界和产业界的广泛关注. TADF分子由于其单线态与三线态之间的能级差较小, 三线态激子可以被环境热活化而通过反系间窜越上转换至单线态, 理论上可实现100%的激子利用率, 从而使得OLED器件外量子效率显著提高. TADF材料被认为是突破高效稳定有机电致蓝光发射瓶颈的潜在解决方案. 一般, TADF分子为含有电子给体(donor, D)和电子受体(acceptor, A)的纯有机推拉电子体系. 通过改变给体单元和受体单元的结构、数量和取代基及其位置可以有效调节TADF分子的单线态-三线态能级差、前线轨道分布、聚集态结构、电致发光颜色及其性能. 同时取代基在调控给、受体单元的推拉电子能力及TADF材料的分子构型、聚集态结构和稳定性等物化特性方面扮演着非常重要的角色. 本综述分别对D-A型和多重共振型TADF蓝光分子的取代基效应进行了综述, 以期为高效稳定的蓝光TADF分子的设计合成提供有效借鉴.

本文引用格式

周涛 , 钱越 , 王宏健 , 冯全友 , 解令海 , 黄维 . 热活化延迟荧光蓝光小分子取代基效应的研究进展[J]. 化学学报, 2021 , 79(5) : 557 -574 . DOI: 10.6023/A21010009

Abstract

As the third-generation emitters for organic light-emitting diodes (OLED), thermally activated delayed fluorescence (TADF) materials have attracted widespread attention from both academic and industrial communities in recent years. In TADF molecules, the triplet excitons can be upconverted to the singlet state with the aid of ambient thermal energy by virtue of the reverse intersystem crossing (RISC) owing to the small singlet-triplet splitting energy (ΔEST). Therefore, 100% exciton utilization efficiency can be theoretically realized by harvesting both singlet and triplet excitons. Consequently, the external quantum efficiencies of OLEDs can be significantly improved compared with the first-generation devices based on conventional fluorophores. TADF materials are regarded as an effective potential solution to break through the bottleneck of highly efficient and stable blue organic electroluminescence (EL). Generally, TADF molecules is a purely organic push and pull system containing at least an electronic donor and acceptor. The Δ EST, frontier orbital distributions, aggregation structures, EL colors and device performance can be effectively tuning by changing the structures and quantities of the donor and the acceptor, the substituents and their substituted positions. Meanwhile, the substituents of TADF molecules play a crucial role in the regulation of the strengths of donor and acceptor, molecular configurations, aggregation structures, stabilities and other physical and chemical properties. The substituent effects of purely organic blue TADF molecules from D-A type and multiple-resonance type blue TADF molecules are summarized, in the hope of providing effective reference for the design and synthesis of high-efficiency and stable blue light TADF molecules.

参考文献

[1]
Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51,913.
[2]
Burroughes, J. H.; Bradley, D. D.C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347,539.
[3]
Feng, Q.-Y.; Li, B.; Zuo, Z.-Y.; Xie, S.-L.; Yu, M.-N.; Liu, B.; Wei, Y.; Xie, L.-H.; Xia, R.-D.; Huang, W. Chin. J. Polym. Sci. 2019, 37,11.
[4]
Bian, Y.; Liu, K.; Guo, Y.; Liu, Y. Acta Chim. Sinica 2020, 78,848. (in Chinese).
[4]
( 边洋爽, 刘凯, 郭云龙, 刘云圻, 化学学报, 2020, 78,848.)
[5]
Ma, Y.; Zhang, H.; Shen, J.; Che, C. Synth. Met. 1998, 94,245.
[6]
Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395,151.
[7]
Wang, Z. Q.; Cai, J. L.; Zhang, M.; Zheng, C. J.; Ji, B. M. Acta Chim. Sinica 2019, 77,263. (in Chinese).
[7]
( 王志强, 蔡佳林, 张明, 郑才俊, 吉保明, 化学学报, 2019, 77,263.)
[8]
Su, S.-J.; Gonmori, E.; Sasabe, H.; Kido, J. Adv. Mater. 2008, 20,4189.
[9]
Ly, K. T.; Chen-Cheng, R.-W.; Lin, H.-W.; Shiau, Y.-J.; Liu, S.-H.; Chou, P.-T.; Tsao, C.-S.; Huang, Y.-C.; Chi, Y. Nat. Photonics 2017, 11,63.
[10]
Wang, Y. K.; Sun, Q.; Wu, S. F.; Yuan, Y.; Li, Q.; Jiang, Z. Q.; Fung, M. K.; Liao, L. S. Adv. Funct. Mater. 2016, 26,7929.
[11]
Zou, J.; Wu, H.; Lam, C. S.; Wang, C.; Zhu, J.; Zhong, C.; Hu, S.; Ho, C. L.; Zhou, G. J.; Wu, H.; Choy, W. C.H. Adv. Mater. 2011, 23,2976.
[12]
Ma, Y.; Chen, K. X.; Guo, Z. L.; Liu, S. J.; Zhao, Q.; Wong, W. Y. Acta Chim. Sinica 2020, 78,23. (in Chinese).
[12]
( 马云, 陈可欣, 郭则灵, 刘淑娟, 赵强, 黄维扬, 化学学报, 2020, 78,23.)
[13]
Ren, B.-Y.; Yi, J.-C.; Zhong, D.-K.; Zhao, Y.-Z.; Guo, R.-D.; Sheng, Y.-G.; Sun, Y.-G.; Xie, L.-H.; Wei, H. Acta Chim. Sinica 2020, 78,56. (in Chinese).
[13]
( 任保轶, 依建成, 钟道昆, 赵玉志, 郭闰达, 盛永刚, 孙亚光, 解令海, 黄维, 化学学报, 2020, 78,56.)
[14]
Liang, X.; Tu, Z.-L.; Zheng, Y.-X. Chem. Eur. J. 2019, 25,5623.
[15]
Duan, L.; Qiu, Y. Chin. J. Mater. Res. 2015, 29,321. (in Chinese).
[15]
( 段炼, 邱勇, 材料研究学报, 2015, 29,321.)
[16]
Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492,234.
[17]
Adachi, C. SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd., Oxford, UK, 2013, pp.513~514.
[18]
Liu, W.; Chen, J. X.; Zheng, C. J.; Wang, K.; Chen, D. Y.; Li, F.; Dong, Y. P.; Lee, C. S.; Ou, X. M.; Zhang, X. H. Adv. Funct. Mater. 2016, 26,2002.
[19]
Zhang, J.; Ding, D.; Wei, Y.; Han, F.; Xu, H.; Huang, W. Adv. Mater. 2016, 28,479.
[20]
Zhang, D.; Duan, L.; Li, C.; Li, Y.; Li, H.; Zhang, D.; Qiu, Y. Adv. Mater. 2014, 26,5050.
[21]
Zhang, D.; Cai, M.; Bin, Z.; Zhang, Y.; Zhang, D.; Duan, L. Chem. Sci. 2016, 7,3355.
[22]
Chen, J.-X.; Tao, W.-W.; Chen, W.-C.; Xiao, Y.-F.; Wang, K.; Cao, C.; Yu, J.; Li, S.; Geng, F.-X.; Adachi, C.; Lee, C.-S.; Zhang, X.-H. Angew. Chem. Int. Ed. 2019, 58,14660.
[23]
Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H. Nat. Photonics 2018, 12,235.
[24]
Ahn, D. H.; Kim, S. W.; Lee, H.; Ko, I. J.; Karthik, D.; Lee, J. Y.; Kwon, J. H. Nat. Photonics 2019, 13,540.
[25]
Cai, X.-Y.; Su, S.-J. Adv. Funct. Mater. 2018, 28,1802558.
[26]
Qiu, Z. P.; Tan, J. H.; Cai, N.; Wang, K.; Ji, S. M.; Huo, Y. P. Chin. J. Org. Chem. 2019, 39,679. (in Chinese).
[26]
( 邱志鹏, 谭继华, 蔡宁, 王凯, 籍少敏, 霍延平, 有机化学, 2019, 39,679.)
[27]
Liu, Q. Q.; Zhang, Y. H.; Gao, C.; Wang, T. Y.; Hu, W. P.; Dong, H. L. Acta Chim. Sinica 2020, 78,945. (in Chinese).
[27]
( 刘情情, 张逸寒, 高灿, 王天禹, 胡文平, 董焕丽, 化学学报, 2020, 78,945.)
[28]
Qiu, Z.; Yang, Z.; Chen, W.-C.; Xing, L.; Hu, S.; Ji, S.; Yang, Q.; Cai, N.; Ouyang, X.; Huo, Y. J. Mater. Chem. C 2020, 8,4139.
[29]
Xie, L. H.; Chang, Y. Z.; Gu, J. F.; Sun, R. J.; Li, J. W.; Zhao, X. H.; Huang, W. Acta Phys.-Chim. Sin. 2010, 26,1784. (in Chinese).
[29]
( 解令海, 常永正, 顾菊芬, 孙瑞娟, 李杰伟, 赵祥华, 黄维, 物理化学学报, 2010, 26,1784.)
[30]
Penfold, T. J.; Dias, F. B.; Monkman, A. P. Chem. Commun. 2018, 54,3926.
[31]
Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105,4009.
[32]
Byeon, S. Y.; Kim, J.; Lee, D. R.; Han, S. H.; Forrest, S. R.; Lee, J. Y. Adv. Opt. Mater. 2018, 6,1701340.
[33]
Samanta, P. K.; Kim, D.; Coropceanu, V.; Brédas, J.-L. J. Am. Chem. Soc. 2017, 139,4042.
[34]
Gan, L.; Xu, Z.; Wang, Z.; Li, B.; Li, W.; Cai, X.; Liu, K.; Liang, Q.; Su, S.-J. Adv. Funct. Mater. 2019, 29,1808088.
[35]
Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M. A.; Chae, H. S.; Einzinger, M.; Ha, D.-G.; Wu, T.; Markopoulos, G.; Jeon, S.; Kang, H.; Miyazaki, H.; Numata, M.; Kim, S.; Huang, W.; Hong, S. I.; Baldo, M.; Adams, R. P.; Aspuru-Guzik, A. Nat. Mater. 2016, 15,1120.
[36]
Parker, C. A.; Hatchard, C. G. Trans. Faraday Soc. 1961, 57,1894.
[37]
Gibson, J.; Monkman, A. P.; Penfold, T. J. ChemPhysChem 2016, 17,2956.
[38]
Chen, T.; Zheng, L.; Yuan, J.; An, Z.; Chen, R.; Tao, Y.; Li, H.; Xie, X.; Huang, W. Sci. Rep. 2015, 5,10923.
[39]
Kim, H. M.; Choi, J. M.; Lee, J. Y. RSC Adv. 2016, 6,64133.
[40]
Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26,7931.
[41]
Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136,18070.
[42]
Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134,14706.
[43]
Williams, E. L.; Li, J.; Jabbour, G. E. Appl. Phys. Lett. 2006, 89,083506.
[44]
Tan, J.-H.; Huo, Y.-P.; Cai, N.; Ji, S.-M; Li, Z.-Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37,2457. (in Chinese).
[44]
( 谭继华, 霍延平, 蔡宁, 籍少敏, 李宗植, 张力, 有机化学, 2017, 37,2457.)
[45]
Tan, J.-H.; Chen, W.-C.; Ni, S.-F.; Qiu, Z.; Zhan, Y.; Yang, Z.; Xiong, J.; Cao, C.; Huo, Y.; Lee, C.-S. J. Mater. Chem. C 2020, 8,8061.
[46]
Huang, R.; Kukhta, N. A.; Ward, J. S.; Danos, A.; Batsanov, A. S.; Bryce, M. R.; Dias, F. B. J. Mater. Chem. C 2019, 7,13224.
[47]
Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492,234.
[48]
Park, W. J.; Lee, Y.; Kim, J. Y.; Yoon, D. W.; Kim, J.; Chae, S. H.; Kim, H.; Lee, G.; Shim, S.; Yang, J. H.; Lee, S. J. Synth. Met. 2015, 209,99.
[49]
Zhang, D.; Cai, M.; Zhang, Y.; Zhang, D.; Duan, L. Mater. Horiz. 2016, 3,145.
[50]
Chan, C.-Y.; Cui, L.-S.; Kim, J. U.; Nakanotani, H.; Adachi, C. Adv. Funct. Mater. 2018, 28,1706023.
[51]
Noda, H.; Nakanotani, H.; Adachi, C. Sci. Adv. 2018, 4,eaao6910.
[52]
Kreiza, G.; Berenis, D.; Banevi?ius, D.; Jur??nas, S.; Javorskis, T.; Orentas, E.; Kazlauskas, K. Chem. Eng. J. 2021, 412,128574.
[53]
Chen, X. L.; Jia, J. H.; Yu, R.; Liao, J. Z.; Yang, M. X.; Lu, C. Z. Angew. Chem. Int. Ed. 2017, 56,15006.
[54]
Lee, Y. H.; Park, S.; Oh, J.; Woo, S.-J.; Kumar, A.; Kim, J.-J.; Jung, J.; Yoo, S.; Lee, M. H. Adv. Opt. Mater. 2018, 6,1800385.
[55]
Wu, T.-L.; Lo, S.-H.; Chang, Y.-C.; Huang, M.-J.; Cheng, C.-H. ACS Appl. Mater. Interfaces 2019, 11,10768.
[56]
Konidena, R. K.; Lee, J. Y. Chem. Rec. 2019, 19,1499.
[57]
Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Nat. Mater. 2015, 14,330.
[58]
Lee, D. R.; Kim, M.; Jeon, S. K.; Hwang, S. H.; Lee, C. W.; Lee, J. Y. Adv. Mater. 2015, 27,5861.
[59]
Cha, J.-R.; Lee, C. W.; Lee, J. Y.; Gong, M.-S. Dyes Pigm. 2016, 134,562.
[60]
Feng, Q. Y.; Tan, K. S.; Zheng, X. J.; Xie, S. L.; Xue, K.; Bo, Y.; Zhang, H.; Lin, D. Q.; Rao, J. F.; Xie, X. M.; Xie, L. H.; Cao, H. T.; Zhang, H. M.; Wei, Y.; Huang, W. ChemPhotoChem 2020, 4,321.
[61]
Guo, J.; Li, X.-L.; Nie, H.; Luo, W.; Hu, R.; Qin, A.; Zhao, Z.; Su, S.-J.; Tang, B. Z. Chem. Mater. 2017, 29,3623.
[62]
Lin, T.-A.; Chatterjee, T.; Tsai, W.-L.; Lee, W.-K.; Wu, M.-J.; Jiao, M.; Pan, K.-C.; Yi, C.-L.; Chung, C.-L.; Wong, K.-T.; Wu, C.-C. Adv. Mater. 2016, 28,6976.
[63]
Lee, D. R.; Choi, J. M.; Lee, C. W.; Lee, J. Y. ACS Appl. Mater. Interfaces 2016, 8,23190.
[64]
Zhu, X.-D.; Tian, Q.-S.; Zheng, Q.; Wang, Y.-K.; Yuan, Y.; Li, Y.; Jiang, Z.-Q.; Liao, L.-S. J. Lumin. 2019, 206,146.
[65]
Zhu, X.-D.; Tian, Q.-S.; Zheng, Q.; Tao, X.-C.; Yuan, Y.; Yu, Y.-J.; Li, Y.; Jiang, Z.-Q.; Liao, L.-S. Org. Electron. 2019, 68,113.
[66]
Ryoo, C. H.; Cho, I.; Han, J.; Yang, J.-h.; Kwon, J. E.; Kim, S.; Jeong, H.; Lee, C.; Park, S. Y. ACS Appl. Mater. Interfaces 2017, 9,41413.
[67]
Lv, X.; Huang, R.; Sun, S.; Zhang, Q.; Xiang, S.; Ye, S.; Leng, P.; Dias, F. B.; Wang, L. ACS Appl. Mater. Interfaces 2019, 11,10758.
[68]
Oh, C. S.; Han, S. H.; Lee, J. Y. J. Mater. Chem. C 2017, 5,9106.
[69]
Woo, S.-J.; Kim, Y.; Kwon, S.-K.; Kim, Y.-H.; Kim, J.-J. ACS Appl. Mater. Interfaces 2019, 11,7199.
[70]
Huang, W.; Einzinger, M.; Maurano, A.; Zhu, T.; Tiepelt, J.; Yu, C.; Chae, H. S.; Van Voorhis, T.; Baldo, M. A.; Buchwald, S. L. Adv. Opt. Mater. 2019, 7,1900476.
[71]
Lee, K. H.; Jeon, S. O.; Chung, Y. S.; Numata, M.; Lee, H.; Lee, E. K.; Kwon, E. S.; Sim, M.; Choi, H.; Lee, J. Y. J. Mater. Chem. C 2020, 8,1736.
[72]
Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y. Chem. Mater. 2017, 29,1946.
[73]
Yang, J. W.; Choi, J. M.; Lee, J. Y. Phys. Chem. Chem. Phys. 2016, 18,31330.
[74]
Jürgensen, N.; Kretzschmar, A.; H?fle, S.; Freudenberg, J.; Bunz, U. H.F.; Hernandez-Sosa, G. Chem. Mater. 2017, 29,9154.
[75]
Han, M.; Chen, Y.; Xie, Y.; Zhang, F.; Li, X.; Huang, A.; Fan, Y.; Fan, Y.; Gong, Y.; Peng, Q.; Li, Q.; Ma, D.; Li, Z. Cell Rep. Phys. Sci. 2020, 1,100252.
[76]
Stachelek, P.; Ward, J. S.; dos Santos, P. L.; Danos, A.; Colella, M.; Haase, N.; Raynes, S. J.; Batsanov, A. S.; Bryce, M. R.; Monkman, A. P. ACS Appl. Mater. Interfaces 2019, 11,27125.
[77]
Sun, Y.; Duan, L.; Zhang, D.; Qiao, J.; Dong, G.; Wang, L.; Qiu, Y. Adv. Funct. Mater. 2011, 21,1881.
[78]
Sasabe, H.; Gonmori, E.; Chiba, T.; Li, Y.-J.; Tanaka, D.; Su, S.-J.; Takeda, T.; Pu, Y.-J.; Nakayama, K.-i.; Kido, J. Chem. Mater. 2008, 20,5951.
[79]
Komatsu, R.; Sasabe, H.; Seino, Y.; Nakao, K.; Kido, J. J. Mater. Chem. C 2016, 4,2274.
[80]
Li, B.; Li, Z.; Hu, T.; Zhang, Y.; Wang, Y.; Yi, Y.; Guo, F.; Zhao, L. J. Mater. Chem. C 2018, 6,2351.
[81]
Park, I. S.; Komiyama, H.; Yasuda, T. Chem. Sci. 2017, 8,953.
[82]
Komatsu, R.; Ohsawa, T.; Sasabe, H.; Nakao, K.; Hayasaka, Y.; Kido, J. ACS Appl. Mater. Interfaces 2017, 9,4742.
[83]
Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16,4556.
[84]
Zhang, Z.; Li, G.; Ma, Y.; Wu, F.; Tian, W.; Shen, J. Chin. J. Org. Chem. 2000, 20,529. (in Chinese).
[84]
( 张志明, 李国文, 马於光, 吴芳, 田文晶, 沈家骢, 有机化学, 2000, 20,529.)
[85]
Wong, M. Y.; Krotkus, S.; Copley, G.; Li, W.; Murawski, C.; Hall, D.; Hedley, G. J.; Jaricot, M.; Cordes, D. B.; Slawin, A. M.Z.; Olivier, Y.; Beljonne, D.; Muccioli, L.; Moral, M.; Sancho-Garcia, J.-C.; Gather, M. C.; Samuel, I. D.W.; Zysman-Colman, E. ACS Appl. Mater. Interfaces 2018, 10,33360.
[86]
Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C. C.; Lin, H. W.; Cheng, C. H. ACS Appl. Mater. Interfaces 2016, 8,27026.
[87]
Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H. J. Am. Chem. Soc. 2016, 138,628.
[88]
Im, Y.; Han, S. H.; Lee, J. Y. J. Mater. Chem. C 2018, 6,5012.
[89]
Shen, Y.-F.; Zhao, W.-L.; Lu, H.-Y.; Wang, Y.-F.; Zhang, D.-W.; Li, M.; Chen, C.-F. Dyes Pigm. 2020, 178,108324.
[90]
Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28,2777.
[91]
Liang, X.; Yan, Z.-P.; Han, H.-B.; Wu, Z.-G.; Zheng, Y.-X.; Meng, H.; Zuo, J.-L.; Huang, W. Angew. Chem. Int. Ed. 2018, 57,11316.
[92]
Yuan, Y.; Tang, X.; Du, X.-Y.; Hu, Y.; Yu, Y.-J.; Jiang, Z.-Q.; Liao, L.-S.; Lee, S.-T. Adv. Opt. Mater. 2019, 7,1801536.
[93]
Li, X.; Shi, Y.-Z.; Wang, K.; Zhang, M.; Zheng, C.-J.; Sun, D.-M.; Dai, G.-L.; Fan, X.-C.; Wang, D.-Q.; Liu, W.; Li, Y.-Q.; Yu, J.; Ou, X.-M.; Adachi, C.; Zhang, X.-H. ACS Appl. Mater. Interfaces 2019, 11,13472.
[94]
Hall, D.; Suresh, S. M.; dos Santos, P. L.; Duda, E.; Bagnich, S.; Pershin, A.; Rajamalli, P.; Cordes, D. B.; Slawin, A. M.Z.; Beljonne, D.; K?hler, A.; Samuel, I. D.W.; Olivier, Y.; Zysman-Colman, E. Adv. Opt. Mater. 2020, 8,1901627.
[95]
Zhang, D.; Song, X.; Gillett, A. J.; Drummond, B. H.; Jones, S. T.E.; Li, G.; He, H.; Cai, M.; Credgington, D.; Duan, L. Adv. Mater. 2020, 32,1908355.
[96]
Chan, C.-Y.; Tanaka, M.; Lee, Y.-T.; Wong, Y.-W.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Nat. Photonics 2021, 15,203.
文章导航

/