人工放射性核素236U的分析方法进展及其应用
收稿日期: 2021-02-26
网络出版日期: 2021-04-25
基金资助
中国科学院重点部署项目(ZDRW-CN-2018-1); 国家自然科学基金(11875266); 国家自然科学基金(U1832212); 国家自然科学基金(U1932103); 中国科学院高能物理研究所谢家麟基金(E0546BU20B)
Progress and Application on the Analysis of Anthropogenic Radionuclide 236U
Received date: 2021-02-26
Online published: 2021-04-25
Supported by
Key Deployment Projects of Chinese Academy of Sciences(ZDRW-CN-2018-1); National Natural Science Foundation of China(11875266); National Natural Science Foundation of China(U1832212); National Natural Science Foundation of China(U1932103); Xie Jialin Foundation, Institute of High Energy Physics, Chinese Academy of Sciences(E0546BU20B)
铀-236是一种重要的人工放射性核素, 是三种天然铀同位素之外可以应用在环境示踪、核应急、核取证以及核保障中的一种铀同位素. 人工236U主要是由核燃料235U经过中子照射后吸收中子产生, 因此, 不同“年龄”阶段核燃料中的236U和其他同位素的比值(指纹特征)截然不同. 同时不同反应堆类型中相应指纹特征也不尽相同. 通过监测核燃料、可疑核材料以及环境样品中不同236U/238U、236U/235U同位素比值等指纹特征即可确认反应堆运行状况、追溯核材料来源出处, 甚至可以开展放射性核污染物在环境中的迁移模拟等问题. 铀-236属于低丰度同位素, 其在核样品和环境样品中含量极低, 因此, 精确测定其同位素比值对236U在环境示踪、核应急、核取证以及核保障中的应用尤为重要. 本综述中, 作者总结了近年来痕量236U测定时样品前处理和检测分析技术的发展, 尤其着重于236U同位素比值的质谱检测技术的发展, 以及236U在核保障和环境中的示踪应用的研究进展. 最后, 对痕量236U检测和应用方面的研究提出展望.
邵阳 , 杨国胜 , 张继龙 , 罗敏 , 马玲玲 , 徐殿斗 . 人工放射性核素236U的分析方法进展及其应用[J]. 化学学报, 2021 , 79(6) : 716 -728 . DOI: 10.6023/A21020074
Uranium-236 is an important anthropogenic radionuclide except for the three main natural uranium isotopes, which could be applied in the fields of environmental tracer, nuclear emergency response, nuclear forensics and nuclear safeguards. Artificial 236U is mainly generated through neuron absorption of nuclear fuel 235U after neuron irradiation. Therefore, the isotopic ratios of 236U with other uranium isotopes (fingerprints) are different at different nuclear fuel age. Also, the corresponding fingerprints are different in different types of nuclear reactor. The operation statue of nuclear reactor, the source of nuclear material and the migration of released radionuclides in environment could be studied by analyzing the isotopic ratios of 236U/238U and 236U/235U in the corresponding samples. Since 236U is a minor isotope and its concentration is extremely low in nuclear material and environmental samples, it is important to accurately analyze the isotopic ratios for its application in the environmental tracer, nuclear emergency response, nuclear forensics and nuclear safeguards. In this review, we summarized the development of sample pretreatment and analysis technologies for 236U measurement in recent years, especially focused on the development of 236U isotopic ratio analysis using mass spectrometry, and the research progress of 236U application in the fields of nuclear safeguards and environmental tracer was also reviewed. The research prospect for 236U analysis and application was also proposed.
[1] | Brockman, J. D.; Brown, J. W.; Morrell, J. S.; Robertson, J. D. Anal. Chem. 2016, 88, 8765. |
[2] | Purser, K. H.; Kilius, L. R.; Litherland, A. E.; Zhao, X. Nucl. Instrum. Meth. B 1996, 113, 445. |
[3] | Christl, M.; Casacuberta, N.; Lachner, J.; Herrmann, J.; Synal, H. A. Environ. Sci. Technol. 2017, 51, 12146. |
[4] | Bu, W.; Zheng, J.; Ketterer, M. E.; Hu, S.; Uchida, S.; Wang, X. Anal. Chim. Acta 2017, 995, 1. |
[5] | Sakaguchi, A.; Kawai, K.; Steier, P.; Quinto, F.; Mino, K.; Tomita, J.; Hoshi, M.; Whitehead, N.; Yamamoto, M. Sci. Total Environ. 2009, 407, 4238. |
[6] | Quinto, F.; Hrnecek, E.; Krachler, M.; Shotyk, W.; Steier, P.; Winkler, S. R. Environ. Sci. Technol. 2013, 47, 5243. |
[7] | Shao, Y.; Yang, G.; Luo, M.; Xu, D.; Tazoe, H.; Yamada, M.; Ma, L. Chemosphere 2020, 263, 127909. |
[8] | Steier, P.; Bichler, M.; Keith Fifield, L.; Golser, R.; Kutschera, W.; Priller, A.; Quinto, F.; Richter, S.; Srncik, M.; Terrasi, P.; Wacker, L.; Wallner, A.; Wallner, G.; Wilcken, K. M.; Maria Wild, E. Nucl. Instrum. Meth. B 2008, 266, 2246. |
[9] | Shao, Y.; Yang, G.; Xu, D.; Yamada, M.; Tazoe, H.; Luo, M.; Cheng, H.; Yang, K.; Ma, L. J. Environ. Radioact. 2019, 197, 1. |
[10] | Boulyga, S. F.; Becker, J. S. J. Anal. At. Spectrom. 2002, 17, 1143. |
[11] | Sakaguchi, A.; Steier, P.; Takahashi, Y.; Yamamoto, M. Environ. Sci. Technol. 2014, 48, 3691. |
[12] | Castrillejo, M.; Witbaard, R.; Casacuberta, N.; Richardson, C. A.; Dekker, R.; Synal, H. A.; Christl, M. Sci. Total Environ. 2020, 717, 137094. |
[13] | Lee, S. H.; Povinec, P. P.; Wyse, E.; Hotchkis, M. A. C. Appl. Radiat. Isot. 2008, 66, 823. |
[14] | Christl, M.; Lachner, J.; Vockenhuber, C.; Lechtenfeld, O.; Stimac, I.; van der Loeff, M. R.; Synal, H. A. Geochim. Cosmochim. Acta 2012, 77, 98. |
[15] | Martelat, B.; Isnard, H.; Vio, L.; Dupuis, E.; Cornet, T.; Nonell, A.; Chartier, F. Anal. Chem. 2018, 90, 8622. |
[16] | Diez-Fernandez, S.; Jaegler, H.; Bresson, C.; Chartier, F.; Evrard, O.; Hubert, A.; Nonell, A.; Pointurier, F.; Isnard, H. Talanta 2020, 206, 120221. |
[17] | Lopez-Lora, M.; Chamizo, E.; Villa-Alfageme, M.; Hurtado- Bermudez, S.; Casacuberta, N.; Garcia-Leon, M. Talanta 2018, 178, 202. |
[18] | Wang, H.; Ni, Y.; Zheng, J.; Huang, Z.; Xiao, D.; Aono, T. Anal. Chim. Acta 2019, 1050, 71. |
[19] | Kolacinska, K.; DeVol, T. A.; Seliman, A. F.; Bliznyuk, V. N.; Dudek, J.; Dudek, M. K.; Piotrowski, P.; Trojanowicz, M. Talanta 2019, 205, 120099. |
[20] | Huang, Z.; Ni, Y.; Wang, H.; Zheng, J.; Yamazaki, S.; Sakaguchi, A.; Long, X.; Uchida, S. Microchem. J. 2019, 148, 597. |
[21] | Lopez-Lora, M.; Levy, I.; Chamizo, E. Talanta 2019, 200, 22. |
[22] | Wang, Z.; Zheng, J.; Cao, L.; Tagami, K.; Uchida, S. Anal. Chem. 2016, 88, 7387. |
[23] | Willberger, C.; Amayri, S.; Haussler, V.; Scholze, R.; Reich, T. Anal. Chem. 2019, 91, 11537. |
[24] | Du, J.; Wang, L.; Xiong, P. Nuclear Electronics and Detection Technology 2017, 37, 335. (in Chinese) |
[24] | (杜杰, 王丽萍, 熊鹏辉, 核电子学与探测技术, 2017, 37, 335.) |
[25] | Yang, G.; Tazoe, H.; Yamada, M. Anal. Chim. Acta 2016, 944, 44. |
[26] | Wang, W.; Xu, J.; Zhai, L.; Shen, X.; Yuan, X.; Wei, G.; Fang, S.; Deng, H.; Li, Z. Journal of Chinese Mass Spectrometry Society 2019, 40, 518. (in Chinese) |
[26] | (汪伟, 徐江, 翟利华, 沈小攀, 袁祥龙, 韦冠一, 方随, 邓虎, 李志明, 质谱学报, 2019, 40, 518.) |
[27] | Park, J. H.; Choi, E. J. Talanta 2016, 160, 600. |
[28] | Zhang, J.; Li, C.; Wang, L.; Wu, Z.; Cole, H.; Zhou, Z.; Yang, L.; Li, D.; Tan, X. Uranium Geology 2019, 35, 38. (in Chinese) |
[28] | (张继龙, 黎春, 王岚, 武朝辉, Cole, H, 周至波, 杨丽芳, 李多宏, 谭西早, 铀矿地质, 2019, 35, 38.) |
[29] | Bellucci, J. J.; Whitehouse, M. J.; Aleshin, M.; Eriksson, M. Anal. Chem. 2019, 91, 5599. |
[30] | Prá?ek, T.; Němec, M.; Steier, P.; Kern, M.; Honda, M.; Hain, K.; Zhang, X. Nucl. Instrum. Meth. B 2020, 472, 64. |
[31] | Claverie, F.; Hubert, A.; Berail, S.; Donard, A.; Pointurier, F.; Pécheyran, C. Anal. Chem. 2016, 88, 4375. |
[32] | Boulyga, S.; Konegger-Kappel, S.; Richter, S.; Sangély, L. J. Anal. At. Spectrom. 2015, 30, 1469. |
[33] | Fahey, A. J.; Groopman, E. E.; Grabowski, K. S.; Fazel, K. C. Anal. Chem. 2016, 88, 7145. |
[34] | Jaegler, H.; Pointurier, F.; Diez-Fernandez, S.; Gourgiotis, A.; Isnard, H.; Hayashi, S.; Tsuji, H.; Onda, Y.; Hubert, A.; Laceby, J. P.; Evrard, O. Chemosphere 2019, 225, 849. |
[35] | Boulyga, S. F.; Heumann, K. G. J. Environ. Radioact. 2006, 88, 1. |
[36] | Boulyga, S. F.; Matusevich, J. L.; Mironov, V. P.; Kudrjashov, V. P.; Halicz, L.; Segal, I.; McLean, J. A.; Montaser, A.; Sabine Becker, J. J. Anal. At. Spectrom. 2002, 17, 958. |
[37] | Marsden, O. J.; Livens, F. R.; Day, J. P.; Fifield, L. K.; Goodall, P. S. Analyst 2001, 126, 633. |
[38] | Maxwell, S. L.; Culligan, B. K.; Kelsey-Wall, A.; Shaw, P. J. Anal. Chim. Acta 2011, 701, 112. |
[39] | Maxwell, S. L.; Culligan, B. K.; Noyes, G. W. Radiochim. Acta 2010, 98, 793. |
[40] | Zhang, W.; Hu, Z. Spectrochim. Acta B 2019, 160, 105690. |
[41] | Qiao, J.; Hou, X.; Steier, P.; Golser, R. Anal. Chem. 2013, 85, 11026. |
[42] | Qiao, J.; Hou, X.; Steier, P.; Nielsen, S.; Golser, R. Anal. Chem. 2015, 87, 7411. |
[43] | Michel, H.; Levent, D.; Barci, V.; Barci-Funel, G.; Hurel, C. Talanta 2008, 74, 1527. |
[44] | Rovan, L.; ?trok, M. J. J. Anal. At. Spectrom. 2019, 34, 1882. |
[45] | Froehlich, M. B.; Chan, W. Y.; Tims, S. G.; Fallon, S. J.; Fifield, L. K. J. Environ. Radioact. 2016, 165, 197. |
[46] | Dai, X.; Kramer-Tremblay, S. Anal. Chem. 2014, 86, 5441. |
[47] | Dalencourt, C.; Chabane, M. N.; Tremblay-Cantin, J. C.; Lariviere, D. Talanta 2020, 207, 120282. |
[48] | Metzger, S. C.; Ticknor, B. W.; Rogers, K. T.; Bostick, D. A.; McBay, E. H.; Hexel, C. R. Anal. Chem. 2018, 90, 9441. |
[49] | Jia, G. J. Radioan. Nucl. Chem. 2016, 311, 1007. |
[50] | Shibahara, Y.; Kubota, T.; Fujii, T.; Fukutani, S.; Takamiya, K.; Konno, M.; Mizuno, S.; Yamana, H. J. Radioan. Nucl. Chem. 2015, 307, 2281. |
[51] | Habibi, A.; Boulet, B.; Gleizes, M.; Lariviere, D.; Cote, G. Anal. Chim. Acta 2015, 883, 109. |
[52] | Qiao, J.; Shi, K.; Hou, X.; Nielsen, S.; Roos, P. Environ. Sci. Technol. 2014, 48, 3935. |
[53] | Chamizo, E.; López-Lora, M.; Villa, M.; Casacuberta, N.; López-Gutiérrez, J. M.; Pham, M. K. Nucl. Instrum. Meth. B 2015, 361, 535. |
[54] | De Cesare, M.; Fifield, L. K.; Sabbarese, C.; Tims, S. G.; De Cesare, N.; D’Onofrio, A.; D’Arco, A.; Esposito, A. M.; Petraglia, A.; Roca, V.; Terrasi, F. Nucl. Instrum. Meth. B 2013, 294, 152. |
[55] | Boulyga, S. F.; Koepf, A.; Konegger-Kappel, S.; Macsik, Z.; Stadelmann, G. J. Anal. At. Spectrom. 2016, 31, 2272. |
[56] | Buchholz, B. A.; Brown, T. A.; Hamilton, T. F.; Hutcheon, I. D.; Marchetti, A. A.; Martinelli, R. E.; Ramon, E. C.; Tumey, S. J.; Williams, R. W. Nucl. Instrum. Meth. B 2007, 259, 733. |
[57] | Duffin, A. M.; Hart, G. L.; Hanlen, R. C.; Eiden, G. C. J. Radioan. Nucl. Chem. 2012, 296, 1031. |
[58] | Craig, G.; Horstwood, M. S. A.; Reid, H. J.; Sharp, B. L. J. Anal. At. Spectrom. 2020, 35, 1011. |
[59] | Krachler, M.; Wallenius, M.; Nicholl, A.; Mayer, K. RSC Adv. 2020, 10, 16629. |
[60] | Krachler, M.; Varga, Z.; Nicholl, A.; Wallenius, M.; Mayer, K. Microchem. J. 2018, 140, 24. |
[61] | Wang, W.; Li, Z.; Xu, J.; Zhou, G.; Shen, X.; Zhai, L. Chinese Journal of Analytical Chemistry 2015, 43, 703. (in Chinese) |
[61] | (汪伟, 李志明, 徐江, 周国庆, 沈小攀, 翟利华, 分析化学, 2015, 43, 703.) |
[62] | Jaegler, H.; Gourgiotis, A.; Steier, P.; Golser, R.; Diez, O.; Cazala, C. Anal. Chem. 2020, 92, 7869. |
[63] | Xing, S.; Luo, M.; Wu, Y.; Liu, D.; Dai, X. J. Anal. At. Spectrom. 2019, 34, 2027. |
[64] | Tanimizu, M.; Sugiyama, N.; Ponzevera, E.; Bayon, G. J. Anal. At. Spectrom. 2013, 28, 1372. |
[65] | Wang, Y.; Hou, X.; Zhang, W.; Fan, Y. Talanta 2021, 224, 121882. |
[66] | Zhao, X.; Kilius, L. R.; Litherland, A. E.; Beasley, T. Nucl. Instrum. Meth. B 1997, 126, 297. |
[67] | Zhao, X.; Nadeau, M. J.; Kilius, L. R.; Litherland, A. E. Nucl. Instrum. Meth. B 1994, 92, 249. |
[68] | Zhao, X.; Nadeau, M. J.; Kilius, L. R.; Litherland, A. E. Earth Planet. Sci. Lett. 1994, 124, 241. |
[69] | Quinto, F.; Golser, R.; Lagos, M.; Plaschke, M.; Schafer, T.; Steier, P.; Geckeis, H. Anal. Chem. 2015, 87, 5766. |
[70] | Lopez-Lora, M.; Chamizo, E.; Rozmaric, M.; Louw, D. C. Sci. Total Environ. 2020, 708, 135222. |
[71] | Hain, K.; Steier, P.; Froehlich, M. B.; Golser, R.; Hou, X.; Lachner, J.; Nomura, T.; Qiao, J.; Quinto, F.; Sakaguchi, A. Nat. Commun. 2020, 11, 1275. |
[72] | Zhao, X. L.; Francisco, B. B. A.; Kieser, W. E.; El-Jaby, A.; Cochrane, C.; Clark, I. D. Nucl. Instrum. Meth. B 2019, 459, 98. |
[73] | Kazi, Z. H.; Charles, C. R. J.; Zhao, X. L.; Cornett, R. J.; Kieser, W. E. Nucl. Instrum. Meth. B 2019, 456, 218. |
[74] | Wang, C.; Dong, K.; Zhao, X.; He, M.; Zhang, Y.; Jiang, S.; Zhao, Y.; Li, L. Atomic Energy Science and Technology 2016, 50, 732. (in Chinese) |
[74] | (王琛, 董克君, 赵兴红, 何明, 张燕, 姜山, 赵永刚, 李力力, 原子能科学技术, 2016, 50, 732.) |
[75] | Wang, F.; Zhang, Y.; Wang, X.; Zhao, Y.; Wang, C.; Liu, Y.; Zhu, J.; Lu, J. Atomic Energy Science and Technology 2015, 49, 400. (in Chinese) |
[75] | (王凡, 张燕, 王晓明, 赵永刚, 王琛, 刘宇昂, 朱建锐, 鹿捷, 原子能科学技术, 2015, 49, 400.) |
[76] | Shen, Y.; Wang, T.; Wang, C.; Zhang, Y.; Zhao, Y. Atomic Energy Science and Technology 2019, 53, 585. (in Chinese) |
[76] | (沈彦, 王同兴, 王琛, 张燕, 赵永刚, 原子能科学技术, 2019, 53, 585.) |
[77] | Schneider, S.; Bister, S.; Christl, M.; Hori, M.; Shozugawa, K.; Synal, H. A.; Steinhauser, G.; Walther, C. Appl. Geochem. 2017, 85, 194. |
[78] | Yang, G.; Tazoe, H.; Hayano, K.; Okayama, K.; Yamada, M. Sci. Rep. 2017, 7, 13619. |
[79] | Shinonaga, T.; Steier, P.; Lagos, M.; Ohkura, T. Environ. Sci. Technol. 2014, 48, 3808. |
[80] | Boulyga, S. F.; Sabine Becker, J.; Matusevitch, J. L.; Dietze, H. Int. J. Mass Spectrom. 2000, 203, 143. |
[81] | Boulyga, S. F.; Prohaska, T. Anal. Bioanal. Chem. 2008, 390, 531. |
[82] | Mironov, V. P.; Matusevich, J. L.; Kudrjashov, V. P.; Boulyga, S. F.; Becker, J. S. J. Environ. Monit. 2002, 4, 997. |
[83] | Boulyga, S. F.; Sabine Becker, J. Fresenius J. Anal. Chem. 2001, 370, 612. |
[84] | Qiao, J.; Hain, K.; Steier, P. Chemosphere 2020, 257, 127185. |
[85] | Lopez-Lora, M.; Chamizo, E.; Levy, I.; Christl, M.; Casacuberta, N.; Kenna, T. C. Sci. Total Environ. 2020,142741. |
[86] | Arnason, J. G.; Pellegri, C. N.; Moore, J. L.; Lewis-Michl, E. L.; Parsons, P. J. Environ. Res. 2016, 150, 629. |
[87] | Casacuberta, N.; Christl, M.; Buesseler, K. O.; Lau, Y.; Vockenhuber, C.; Castrillejo, M.; Synal, H. A.; Masque, P. Environ. Sci. Technol. 2017, 51, 9826. |
[88] | Tims, S. G.; Froehlich, M. B.; Fifield, L. K.; Wallner, A.; De Cesare, M. J. Environ. Radioact. 2016, 151, 563. |
[89] | Child, D. P.; Hotchkis, M. A. C. Nucl. Instrum. Meth. B 2013, 294, 642. |
[90] | Sakaguchi, A.; Kawai, K.; Steier, P.; Imanaka, T.; Hoshi, M.; Endo, S.; Zhumadilov, K.; Yamamoto, M. Sci. Total Environ. 2010, 408, 5392. |
[91] | Liu, Z.; Hu, J.; Yamada, M.; Yang, G. Catena 2020, 193, 104605. |
[92] | Wang, C.; Hou, S.; Pang, H.; Liu, Y.; G?Ggeler, H. W.; Christl, M.; Synal, H. A. J. Glaciol. 2017, 63, 929. |
[93] | Tortorello, R.; Widom, E.; Renwick, W. H. J. Environ. Radioact. 2013, 124, 287. |
[94] | Sakaguchi, A.; Kadokura, A.; Steier, P.; Takahashi, Y.; Shizuma, K.; Hoshi, M.; Nakakuki, T.; Yamamoto, M. Earth Planet. Sci. Lett. 2012, 333-334, 165. |
[95] | Casacuberta, N.; Christl, M.; Lachner, J.; van der Loeff, M. R.; Masqué, P.; Synal, H. A. Geochim. Cosmochim. Acta 2014, 133, 34. |
[96] | Casacuberta, N.; Masqué, P.; Henderson, G.; Rutgers van-der-Loeff, M.; Bauch, D.; Vockenhuber, C.; Daraoui, A.; Walther, C.; Synal, H. A.; Christl, M. Earth Planet. Sci. Lett. 2016, 440, 127. |
[97] | Castrillejo, M.; Casacuberta, N.; Christl, M.; Garcia-Orellana, J.; Vockenhuber, C.; Synal, H. A.; Masque, P. Sci. Total Environ. 2017, 593-594, 745. |
[98] | Chamizo, E.; Lopez-Lora, M.; Bressac, M.; Levy, I.; Pham, M. K. Sci. Total Environ. 2016, 565, 767. |
[99] | Christl, M.; Casacuberta, N.; Lachner, J.; Maxeiner, S.; Vockenhuber, C.; Synal, H.-A.; Goroncy, I.; Herrmann, J.; Daraoui, A.; Walther, C.; Michel, R. Nucl. Instrum. Meth. B 2015, 361, 510. |
[100] | Casacuberta, N.; Christl, M.; Vockenhuber, C.; Wefing, A. M.; Wacker, L.; Masque, P.; Synal, H. A.; van der Loeff, M. R. J. Geophys. Res. Oceans 2018, 123, 6909. |
[101] | Castrillejo, M.; Casacuberta, N.; Christl, M.; Vockenhuber, C.; Synal, H.-A.; Garcia-Ibanez, M. I.; Lherminier, P.; Sarthou, G.; Garcia-Orellana, J.; Masque, P. Biogeosciences 2018, 15, 5545. |
[102] | Qiao, J.; Steier, P.; Nielsen, S.; Hou, X.; Roos, P.; Golser, R. Environ. Sci. Technol. 2017, 51, 6867. |
[103] | Villa-Alfageme, M.; Chamizo, E.; Kenna, T. C.; López-Lora, M.; Casacuberta, N.; Chang, C.; Masqué, P.; Christl, M. Chem. Geol. 2019, 517, 44. |
[104] | Wefing, A. M.; Christl, M.; Vockenhuber, C.; van der Loeff, M. R.; Casacuberta, N. J. Geophys. Res. Oceans 2019, 124, 882. |
/
〈 |
|
〉 |