研究通讯

光化学条件下(β-重氮-α,α-二氟乙基)膦酸酯与羧酸的酯化反应

  • 刘江 ,
  • 徐敬成 ,
  • Romana Pajkert ,
  • 梅海波 ,
  • Gerd-Volker R?schenthaler ,
  • 韩建林
展开
  • a 江苏省林业资源高效加工利用协调创新中心 化学工程学院 南京林业大学 南京 210037
    b 生命科学与化学学院 不来梅雅各布大学 不来梅 28759

收稿日期: 2021-03-17

  网络出版日期: 2021-04-26

基金资助

中国国家自然科学基金(21761132021); 德国科学基金(Grant RO 362/74-1)

Esterification of Carboxylic Acids with (β-Diazo-α,α-difluoroethyl)phosphonates under Photochemical Conditions

  • Jiang Liu ,
  • Jingcheng Xu ,
  • Romana Pajkert ,
  • Haibo Mei ,
  • Gerd-Volker R?schenthaler ,
  • Jianlin Han
Expand
  • a Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
    b Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany

Received date: 2021-03-17

  Online published: 2021-04-26

Supported by

National Natural Science Foundation of China(21761132021); German Research Foundation(Grant RO 362/74-1)

摘要

利用可见光促进的O-H插入反应可以在温和条件下实现羧酸与原位生成的(β-重氮-α,α-二氟乙基)膦酸酯的酯化反应, 以良好的产率得到了含有α,α-二氟甲基膦酸酯的羧酸酯类化合物. 该反应操作简单, 对于不同的官能团具有良好的适应性. 因此, 这一反应为α,α-二氟甲基膦酸酯衍生物的合成提供了一种高效的策略.

本文引用格式

刘江 , 徐敬成 , Romana Pajkert , 梅海波 , Gerd-Volker R?schenthaler , 韩建林 . 光化学条件下(β-重氮-α,α-二氟乙基)膦酸酯与羧酸的酯化反应[J]. 化学学报, 2021 , 79(6) : 747 -750 . DOI: 10.6023/A21030096

Abstract

Fluoroalkyl-substituted diazo compounds belong to one of the most powerful tools in organic synthetic chemistry and their transformations have attracted numerous attention. Since the reagent, trifluorodiazoethane, was discovered in 1943, it has attracted many research interests in organic synthesis. On the contrary, the similar difluorodiazoethane (CF2HCHN2), which just changes CF3 group to CF2H group, however, leads to significant changes on their chemical properties, in particular the stability. Until now, the studies on difluorinated diazo compounds remain less explored. Therefore, the related chemistry on difluorodiazoethane emerges as a hot research topic, and the inventory of methods for the preparation and application of new diazo compounds is continuously supplemented. In this communication, a visible-light- promoted esterification reaction of carboxylic acids with in situ generated (β-diazo-α,α-difluoroethyl)phosphonates via O-H insertion has been achieved under mild conditions, which afforded α,α-difluoromethyl phosphonates (DFMPs)-containing esters with good chemical yields. Several carboxylic acids and amines featuring various functional groups are well compatible in the reaction under photochemical conditions. A control experiment with the addition of D2O has been performed to verify the proton-transfer process involved in this reaction, and a possible mechanism containing in situ generation of diazo intermediate and protonation is provided. This reaction is operationally simple and shows good functional group compatibility providing an efficient and sustainable strategy for the assembly of α,α-difluorinated phosphonate derivatives. A typical procedure for this visible-light- promoted reaction between (β-diazo-α,α-difluoroethyl)phosphonates and carboxylic acids is presented as follows: into a vail were taken amine 1 (0.2 mmol), carboxylic acid 2 (0.1 mmol), t-BuONO (0.24 mmol) and CHCl3 (3 mL). The mixture was heated to 60 ℃ and stirred in the presence of 4.5 W blue LEDs for 4 h. Then, solvent was removed in vacuum. Product 3was purified by TLC plate of 20 cm×20 cm using petroleum ether/ethyl acetate (4∶1,V/V) as eluent.

参考文献

[1]
(a) Westheimer, F. H. Science 1987, 235, 1173.
[1]
(b) Sun, K.; Liu, H.; Xie, Q.; Luo, H. Chin. J. Org. Chem. 2020, 40, 2275. (in Chinese)
[1]
(孙凯, 刘海东, 谢奇, 罗海清, 有机化学, 2020, 40, 2275.)
[1]
(c) Zhao, S.; Gong, X.; Gan, Z.; Yan, Q.; Liu, X.; Yang, D. Chin. J. Org. Chem. 2021, 41, 258.
[1]
(d) Zhang, C.; Wang, H.; Yu, X.; Yang, J.; Li, C.; Gong, R.; Song, F.; Sun, Y. Chin. J. Org. Chem. 2020, 40, 432. (in Chinese)
[1]
(张成路, 王华玉, 于向坤, 杨敬怡, 李传银, 宫荣庆, 宋府璐, 孙越冬, 有机化学, 2020, 40, 432.)
[1]
(e) Shi, S.; Liang, Z.; Sun, J.; Shi, Y. Chin. J. Org. Chem. 2019, 39, 2106. (in Chinese)
[1]
(侍术智, 梁志鹏, 孙建勇, 石玉军, 有机化学, 2019, 39, 2106.)
[2]
(a) Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868.
[2]
(b) Panigrahi, K.; Applegate, G. A.; Malik, G.; Berkowitz, D. B. J. Am. Chem. Soc. 2015, 137, 3600.
[2]
(c) Shevchuk, M.; Wang, Q.; Pajkert, R.; Xu, J.; Mei, H.; R?schenthaler, G. V.; Han, J. L. Adv. Synth. Catal. 2020, doi.org/10.1002/adsc.202001464.
[3]
(a) Xu, Y.; Aoki, J.; Shimizu, K.; Umezu-Goto, M.; Hama, K.; Takanezawa, Y.; Yu, S.; Mills, G. B.; Arai, H.; Qian, L.; Prestwich, G. D. J. Med. Chem. 2005, 48, 3319.
[3]
(b) Kano, K.; Arima, N.; Ohgami, M.; Aoki, J. Cur. Med. Chem. 2008, 15, 2122.
[4]
(a) Xu, Y.; Qian, L.; Prestwich, G. D. J. Org. Chem. 2003, 68, 5320.
[4]
(b) Xu, Y.; Prestwich, G. D. Org. Lett. 2002, 4, 4021.
[5]
Mertens, L.; Koenigs, R. M. Org. Biomol. Chem. 2016, 14, 10547.
[6]
(a) Mykhailiuk, P. K. Chem. Rev. 2020, 120, 12718.
[6]
(b) Wang, X.; Wang, X.; Wang, J. Tetrahedron 2019, 75, 949.
[6]
(c) Zhang, F.; Peng, X.; Ma, J. Chin. J. Org. Chem. 2019, 39, 109. (in Chinese)
[6]
(张发光, 彭星, 马军安, 有机化学, 2019, 39, 109.)
[7]
(a) Gilman, H.; Jones, R. G. J. Am. Chem. Soc. 1943, 65, 1458.
[7]
(b) Morandi, B.; Carreira, E. M. Angew. Chem. Int. Ed. 2010, 49, 938.
[7]
(c) Guo, R.; Lv, N.; Zhang, F. G.; Ma, J. A. Org. Lett. 2018, 20, 6994.
[7]
(d) Tran, U. P. N.; Hommelsheim, R.; Yang, Z.; Empel, C.; Hock, K. J.; Nguyen, T. V.; Koenigs, R. M. Chem. Eur. J. 2020, 26, 1254.
[7]
(e) Luo, H.; Wu, G.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2015, 54, 14503.
[7]
(f) Zhang, Z.; Zhou, Q.; Yu, W.; Li, T.; Zhang, Y.; Wang, J. Chin. J. Chem. 2017, 35, 387.
[7]
(g) Wang, X.; Xu, Y.; Deng, Y.; Zhou, Y.; Feng, J.; Ji, G.; Zhang, Y.; Wang, J. Chem. Eur. J. 2014, 20, 961.
[8]
(a) Mykhailiuk, P. K.; Koenigs, R. M. Chem. Eur. J. 2019, 25, 6053.
[8]
(b) Emamian, S. J. Fluorine Chem. 2017, 199, 77.
[9]
Mykhailiuk, P. K. Angew. Chem. Int. Ed. 2015, 54, 6558.
[10]
(a) Lebed, P. S.; Fenneteau, J.; Wu, Y.; Cossy, J.; Mykhailiuk, P. K. Eur. J. Org. Chem. 2018, 2018, 6114.
[10]
(b) Hock, K. J.; Mertens, L.; Metze, F. K.; Schmittmann, C.; Koenigs, R. M. Green Chem. 2017, 19, 905.
[10]
(c) Britton, J.; Jamison, T. F. Angew. Chem. Int. Ed. 2017, 56, 8823.
[10]
(d) Britton, J.; Jamison, T. F. Eur. J. Org. Chem. 2017, 2017, 6566.
[11]
(a) Hock, K. J.; Mertens, L.; Koenigs, R. M. Chem. Commun. 2016, 52, 13783.
[11]
(b) Zhang, X. W.; Hu, W. L.; Chen, S.; Hu, X. G. Org. Lett. 2018, 20, 860.
[11]
(c) Gao, Y.; Peng, S. Q.; Liu, D. Y.; Rui, P. X.; Hu, X. G. Eur. J. Org. Chem. 2019, 2019, 1715.
[11]
(d) Duan, Y.; Lin, J. H.; Xiao, J. C.; Gu, Y. C. Chem. Commun. 2017, 53, 3870.
[12]
Peng, S. Q.; Zhang, X. W.; Zhang, L.; Hu, X. G. Org. Lett. 2017, 19, 5689.
[13]
(a) Peng, X.; Zhang, F. G.; Ma, J. A. Adv. Synth. Catal. 2020, 362, 4432.
[13]
(b) Tan, X. F.; Zhang, F. G.; Ma, J. A. Beilstein J. Org. Chem. 2020, 16, 638.
[13]
(c) Zhang, Z. Q.; Zheng, M. M.; Xue, X. S.; Marek, I.; Zhang, F. G.; Ma, J. A. Angew. Chem. Int. Ed. 2019, 58, 18191.
[13]
(d) Zeng, J. L.; Chen, Z.; Zhang, F. G.; Ma, J. A. Org. Lett. 2018, 20, 4562.
[14]
(a) Mei, H.; Liu, J.; Pajkert, R.; Wang, L.; R?schenthaler, G. V.; Han, J. L. Org. Chem. Front. 2021, 8, 767.
[14]
(b) Mei, H.; Wang, L.; Pajkert, R.; Wang, Q.; Xu, J.; Liu, J.; R?schenthaler, G. V.; Han, J. L. Org. Lett. 2021, 23, 1130.
[15]
Tan, F.; Liu, X.; Hao, X.; Tang, Y.; Lin, L.; Feng, X. ACS Catal. 2016, 6, 6930.
[16]
Xie, C.; Zhang, L.; Sha, W.; Mei, H.; Pajkert, R.; Ponomarenko, M.; Pan, Y.; R?schenthaler, G. V.; Soloshonok, V. A.; Han, J. Chem. Eur. J. 2016, 22, 7036.
[17]
(a) Yang, Z.; Stivanin, M. L.; Jurberg, I. D.; Koenigs, R. M. Chem. Soc. Rev. 2020, 49, 6833.
[17]
(b) Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R. M. Angew. Chem. Int. Ed. 2019, 58, 1203.
[17]
(c) Jana, S.; Yang, Z.; Li, F.; Empel, C.; Ho, J.; Koenigs, R. M. Angew. Chem. Int. Ed. 2020, 59, 5562.
[17]
(d) Jana, S.; Li, F.; Empel, C.; Verspeek, D.; Aseeva, P.; Koenigs, R. M. Chem. Eur. J. 2020, 26, 2586.
[17]
(e) Ciszewski, ?. W.; Rybicka-Jasińska, K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
[18]
For selected examples on esterification of non-fluorinated diazos, see: (a) McGrath, N. A.; Andersen, K. A.; Davis, A. K. F.; Lomax, J. E.; Raines, R. T. Chem. Sci. 2015, 6, 752.
[18]
(b) Mix, K. A.; Raines, R. T. Org. Lett. 2015, 17, 2358.
[18]
(c) Empel, C.; Nguyen, T. V.; Koenigs, R. M. Org. Lett. 2021, 23, 548.
[18]
(d) Audubert, C.; Lebel, H. Org. Lett. 2017, 19, 4407.
[18]
(e) Furrow, M. E.; Myers, A. G. J. Am. Chem. Soc. 2004, 126, 12222.
[19]
Wang, F.; Zhang, Z.; Huang, F. Chin. J. Org. Chem. 2021, 41, 144. (in Chinese)
[19]
(王飞雨, 张志朋, 黄菲, 有机化学, 2021, 41, 144.)
文章导航

/