综述

金属有机框架基复合材料的制备及其光热性能研究

  • 郭彩霞 ,
  • 马小杰 ,
  • 王博
展开
  • 北京理工大学 化学与化工学院 北京 100081

郭彩霞, 北京理工大学硕士研究生. 2018年本科毕业于山东师范大学, 现于北京理工大学攻读硕士学位. 主要研究领域为MOF复合材料的制备及光催化性能.

马小杰, 北京理工大学化学与化工学院预聘助理教授, 于兰州大学化学与化工学院取得本科与硕士学位, 中科院化学研究所获得博士学位. 主要从事多孔材料的环境催化研究工作.

王博, 北京理工大学化学与化工学院教授, 2004年于北京大学化学与分子工程学院获理学学士学位, 2006年于美国密歇根大学获化学材料学硕士学位, 2008年于美国加州大学洛杉矶分校获化学材料学博士学位. 王博教授主要从事新型纳米多孔材料、开放框架聚合物理论与设计及其在关键分离过程、环境防护等领域的应用研究.

收稿日期: 2021-04-22

  网络出版日期: 2021-05-26

基金资助

国家自然科学基金(21625102); 国家自然科学基金(21801017); 国家自然科学基金(21490570); 国家自然科学基金(21674012); 北京市科委科技计划项目(Z181100004418001); 北京理工大学科研基金项目资助

Metal-organic Frameworks-based Composites and Their Photothermal Applications

  • Caixia Guo ,
  • Xiaojie Ma ,
  • Bo Wang
Expand
  • School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2021-04-22

  Online published: 2021-05-26

Supported by

National Natural Science Foundation of China(21625102); National Natural Science Foundation of China(21801017); National Natural Science Foundation of China(21490570); National Natural Science Foundation of China(21674012); Beijing Municipal Science and Technology Project(Z181100004418001); Beijing Institute of Technology Research Fund Program

摘要

金属有机框架材料(metal-organic frameworks, MOFs)是一类新型的有机-无机杂化材料, 具有可功能化的骨架结构、高比表面积、可调控的孔径尺寸等优势. 将MOFs与性质多样的有机/无机功能纳米材料复合, 不仅有可能充分发挥组分各自的优势, 而且有可能产生“1+1>2”的协同效应, 因而引起了人们的广泛关注. 具有光热效应的MOF复合物作为一类重要的MOF复合材料, 在生物诊疗、催化等领域展现出了良好的应用前景. 作者首先综述了近年来MOF复合材料的主要可控制备方法, 随后讨论了光热MOF复合材料的应用研究, 最后对该类材料的未来研究方向和挑战进行了展望.

本文引用格式

郭彩霞 , 马小杰 , 王博 . 金属有机框架基复合材料的制备及其光热性能研究[J]. 化学学报, 2021 , 79(8) : 967 -985 . DOI: 10.6023/A21040173

Abstract

Metal-organic frameworks (MOFs) are a growing class of organic-inorganic hybrid crystalline porous materials, showing high levels of structural and chemical diversity. They have a wide range of applications in gas adsorption and separation, catalysis, sensing, biomedicine and other fields. Due to their intriguing properties such as high porosity, adjustable pore size and tunable surface functionality, MOFs have been gaining popularity as a promising platform for integration of various organic/inorganic functional nanomaterials in a predictable and controllable way. The combination of MOFs and functional components offers a possibility to generate synergetic effect between functional units, thus leading to the creation of multifunctional materials with performance superior to each individual components. In this review, we summarized recent research progress on controllable synthesis of MOF composites. There are basically two strategies, including “bottle in ship” and “ship in bottle”. Following that, preparation methods including solution infiltration, deposition, solid grinding and template synthesis, were discussed in detail. Light-to-heat conversion materials have always been a research focus due to their important applications in solar powered water evaporation and near-infrared (NIR) excited bioimaging and noninvasive cancer treatment. MOFs can not only show intrinsic structure-dependent photoresponse activity, but also serve as porous supports to facilitate the stabilization and spatial distribution of photothermal nanoparticles. Recently, MOF composites with photothermal effects have aroused increasing attention in the fields like tumor diagnosis and treatment, bacterial disinfection and synergistic catalysis. This review mainly focused on the recent research progress on photothermal MOF composites. We discussed the integration of functional MOFs with various inorganic/organic photothermal nanoparticles (e.g. Au, Pt, porphyrin, polydopamine etc.), along with the structure and photothermal application of the composites. Research about MOFs based light-to-heat conversion is at the stage of rapid development. Finally, we also give a prospect to the future development of multifunctional and photothermal MOF composites.

参考文献

[1]
Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257.
[2]
Xu, W.; Tu, B.; Liu, Q.; Shu, Y.; Liang, C. -C.; Diercks, C. S.; Yaghi, O. M.; Zhang, Y. -B.; Deng, H.; Li, Q. Nat. Rev. Mater. 2020, 5, 764.
[3]
Ma, R.; Jiang, H.; Wang, C.; Zhao, C.; Deng, H. Chem. Commun. (Camb) 2020, 56, 2715.
[4]
Wu, Y.; Huang, Z.; Jiang, H.; Wang, C.; Zhou, Y.; Shen, W.; Xu, H.; Deng, H. ACS Appl. Mater. Interfaces 2019, 11, 44573.
[5]
Jiang, H.; Jin, S.; Wang, C.; Ma, R.; Song, Y.; Gao, M.; Liu, X.; Shen, A.; Cheng, G. J.; Deng, H. J. Am. Chem. Soc. 2019, 141, 5481.
[6]
Jiang, H.; Tong, L.; Liu, H.; Xu, J.; Jin, S.; Wang, C.; Hu, X.; Ye, L.; Deng, H.; Cheng, G. J. Matter 2020, 2, 1535.
[7]
Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944.
[8]
Inukai, M.; Tamura, M.; Horike, S.; Higuchi, M.; Kitagawa, S.; Nakamura, K. Angew. Chem. Int. Ed. 2018, 57, 8687.
[9]
Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
[10]
Guo, Z.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78, 397. (in Chinese)
[10]
( 郭振彬, 张媛媛, 冯霄, 化学学报, 2020, 78, 397.)
[11]
Zhang, J.; Li, P.; Zhang, X.; Ma, X.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese)
[11]
( 张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.)
[12]
Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Nature 2016, 539, 76.
[13]
Huang, N.; Drake, H.; Li, J.; Pang, J.; Wang, Y.; Yuan, S.; Wang, Q.; Cai, P.; Qin, J.; Zhou, H. C. Angew. Chem. Int. Ed. 2018, 57, 8916.
[14]
Xin, Z.; Wang, Y. -R.; Chen, Y.; Li, W. -L.; Dong, L. -Z.; Lan, Y. -Q. Nano Energy 2020, 67, 104233.
[15]
Gao, J.; Huang, Q.; Wu, Y.; Lan, Y. -Q.; Chen, B. Adv. Energy Sustainability Res. 2021, 2, 2100033.
[16]
Li, X.; Wang, J.; Xue, F.; Wu, Y.; Xu, H.; Yi, T.; Li, Q. Angew. Chem. Int. Ed. 2021, 60, 2534.
[17]
Tao, W.; Zhu, X.; Yu, X.; Zeng, X.; Xiao, Q.; Zhang, X.; Ji, X.; Wang, X.; Shi, J.; Zhang, H.; Mei, L. Adv. Mater. 2017, 29, 1603276.
[18]
Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75, 339. (in Chinese)
[18]
( 杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
[19]
Wang, B.; Wang, P.; Xie, L. H.; Lin, R. B.; Lv, J.; Li, J. R.; Chen, B. Nat. Commun. 2019, 10, 3861.
[20]
Luo, Y. H.; Xie, A. D.; Hu, M. G.; Wu, J.; Zhang, D. E.; Lan, Y. Q. Inorg. Chem. 2021, 60, 167.
[21]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.
[22]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.
[23]
Zhang, Y.; Wang, F. M.; Ju, E. G.; Liu, Z.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Adv. Funct. Mater. 2016, 26, 6454.
[24]
Yao, A.; Jiao, X.; Chen, D.; Li, C. ACS Appl. Mater. Interfaces 2019, 11, 7927.
[25]
Song, L.; Zhao, T.; Yang, D.; Wang, X.; Hao, X.; Liu, Y.; Zhang, S.; Yu, Z. -Z. J. Hazard. Mater. 2020, 393, 122332.
[26]
Yao, A.; Jiao, X.; Chen, D.; Li, C. ACS Appl. Mater. Interfaces 2020, 12, 18437.
[27]
Chen, Y. -J.; Chen, Y.; Miao, C.; Wang, Y. -R.; Gao, G. -K.; Yang, R. -X.; Zhu, H. -J.; Wang, J. -H.; Li, S. -L.; Lan, Y. -Q. J. Mater. Chem. A 2020, 8, 14644.
[28]
Wang, P. L.; Xie, L. H.; Joseph, E. A.; Li, J. R.; Su, X. O.; Zhou, H. C. Chem. Rev. 2019, 119, 10638.
[29]
Zeng, J.; Wang, X.; Zhang, X.; Zhuo, R. Acta Chim. Sinica 2019, 77, 1156. (in Chinese)
[29]
曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.).
[30]
Qi, Y.; Ren, S.; Che, Y.; Ye, J.; Ning, G. Acta Chimica Sinica 2020, 78, 613. (in Chinese)
[30]
齐野, 任先颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.).
[31]
Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R. A. Eur. J. Org. Chem. 2010, 3701.
[32]
Yang, D.; Yang, G.; Gai, S.; He, F.; An, G.; Dai, Y.; Lv, R.; Yang, P. Nanoscale 2015, 7, 19568.
[33]
Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Adv. Mater. 2011, 23, 3542.
[34]
Yang, S. J.; Choi, J. Y.; Chae, H. K.; Cho, J. H.; Nahm, K. S.; Park, C. R. Chem. Mater. 2009, 21, 1893.
[35]
Petit, C.; Bandosz, T. J. Adv. Funct. Mater. 2011, 21, 2108.
[36]
Prasanth, K. P.; Rallapalli, P.; Raj, M. C.; Bajaj, H. C.; Jasra, R. V. Int. J. Hydrog. Energy 2011, 36, 7594.
[37]
Distefano, G.; Suzuki, H.; Tsujimoto, M.; Isoda, S.; Bracco, S.; Comotti, A.; Sozzani, P.; Uemura, T.; Kitagawa, S. Nat. Chem. 2013, 5, 335.
[38]
Zhu, Y. -D.; Chen, S. -P.; Zhao, H.; Yang, Y.; Chen, X. -Q.; Sun, J.; Fan, H. -S.; Zhang, X. -D. ACS Appl. Mater. Interfaces 2016, 8, 34209.
[39]
Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310.
[40]
Zhu, Q. L.; Xu, Q. Chem. Soc. Rev. 2014, 43, 5468.
[41]
Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. J. Mater. Chem. 2007, 17, 3827.
[42]
Khajavi, H.; Stil, H. A.; Kuipers, H. P.C.E.; Gascon, J.; Kapteijn, F. ACS Catal. 2013, 3, 2617.
[43]
Guo, Z.; Xiao, C.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X.; Tesfagaber, D.; Thiel, A.; Huang, W. ACS Catal. 2014, 4, 1340.
[44]
Volosskiy, B.; Niwa, K.; Chen, Y.; Zhao, Z.; Weiss, N. O.; Zhong, X.; Ding, M.; Lee, C.; Huang, Y.; Duan, X. ACS Nano 2015, 9, 3044.
[45]
Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304.
[46]
Cao, N.; Yang, L.; Dai, H.; Liu, T.; Su, J.; Wu, X.; Luo, W.; Cheng, G. Inorg. Chem. 2014, 53, 10122.
[47]
Shang, N. -Z.; Feng, C.; Gao, S. -T.; Wang, C. Int. J. Hydrog. Energy 2016, 41, 944.
[48]
Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Ferey, G. Angew. Chem. Int. Ed. 2008, 47, 4144.
[49]
Jiang, Z.; Xu, X.; Ma, Y.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; Zhou, Y.; Terasaki, O.; Peng, T.; Zan, L.; Deng, H. Nature 2020, 586, 549.
[50]
Lin, X. Y.; Li, Y. H.; Qi, M. Y.; Tang, Z. R.; Jiang, H. L.; Xu, Y. J. Nanoscale Horiz. 2020, 5, 714.
[51]
Yadav, M.; Xu, Q. Chem. Commun. (Camb) 2013, 49, 3327.
[52]
Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Ronnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2012, 134, 13926.
[53]
Li, Y. X.; Ji, Y. N.; Jin, M. M.; Qi, S. C.; Li, S. S.; Xue, D. M.; Yue, M. B.; Liu, X. Q.; Sun, L. B. ACS Appl. Mater. Interfaces 2018, 10, 40044.
[54]
Zhu, Q. L.; Li, J.; Xu, Q. J. Am. Chem. Soc. 2013, 135, 10210.
[55]
Wang, D.; Pan, Y.; Xu, L.; Li, Z. J. Catal. 2018, 361, 248.
[56]
Wang, D.; Li, Z. J. Catal. 2016, 342, 151.
[57]
Ding, D.; Jiang, Z.; Jin, J.; Li, J.; Ji, D.; Zhang, Y.; Zan, L. J. Catal. 2019, 375, 21.
[58]
Meng, X. -B.; Sheng, J. -L.; Tang, H. -L.; Sun, X. -J.; Dong, H.; Zhang, F. -M. Appl. Catal. B 2019, 244, 340.
[59]
Hermes, S.; Schroter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Angew. Chem. Int. Ed. 2005, 44, 6237.
[60]
Corma, A.; Garcia, H.; Llabres i Xamena, F. X. Chem. Rev. 2010, 110, 4606.
[61]
Luz, I.; Rösler, C.; Epp, K.; Llabrés i Xamena, F. X.; Fischer, R. A. Eur. J. Org. Chem. 2015, 2015, 3904.
[62]
Proch, S.; Herrmannsdorfer, J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J. Chemistry 2008, 14, 8204.
[63]
Li, P. Z.; Aranishi, K.; Xu, Q. Chem. Commun. (Camb) 2012, 48, 3173.
[64]
Lim, D. W.; Yoon, J. W.; Ryu, K. Y.; Suh, M. P. Angew. Chem. Int. Ed. 2012, 51, 9814.
[65]
Hermannsdorfer, J.; Kempe, R. Chemistry 2011, 17, 8071.
[66]
Müller, M.; Lebedev, O. I.; Fischer, R. A. J. Mater. Chem. 2008, 18, 5274.
[67]
George, S. M. Chem. Rev. 2010, 110, 111.
[68]
Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 10294.
[69]
Elam, J. W.; Routkevitch, D.; Mardilovich, P. P.; George, S. M. Chem. Mater. 2003, 15, 3507.
[70]
Morris, W.; Volosskiy, B.; Demir, S.; Gandara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Inorg. Chem. 2012, 51, 6443.
[71]
Klet, R. C.; Wang, T. C.; Fernandez, L. E.; Truhlar, D. G.; Hupp, J. T.; Farha, O. K. Chem. Mater. 2016, 28, 1213.
[72]
Peters, A. W.; Li, Z.; Farha, O. K.; Hupp, J. T. ACS Nano 2015, 9, 8484.
[73]
Peters, A. W.; Li, Z.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces 2016, 8, 20675.
[74]
Peng, S.; Li, M.; Yang, X.; Li, P.; Liu, H.; Xiong, W.; Peng, X. Ceram. Int. 2019, 45, 18128.
[75]
Ahn, S.; Thornburg, N. E.; Li, Z.; Wang, T. C.; Gallington, L. C.; Chapman, K. W.; Notestein, J. M.; Hupp, J. T.; Farha, O. K. Inorg. Chem. 2016, 55, 11954.
[76]
Cui, Y.; Rimoldi, M.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. ChemCatChem 2018, 10, 1772.
[77]
Goetjen, T. A.; Zhang, X.; Liu, J.; Hupp, J. T.; Farha, O. K. ACS Sustain. Chem. Eng. 2019, 7, 2553.
[78]
Ji, P.; Manna, K.; Lin, Z.; Feng, X.; Urban, A.; Song, Y.; Lin, W. J. Am. Chem. Soc. 2017, 139, 7004.
[79]
Ji, P.; Manna, K.; Lin, Z.; Urban, A.; Greene, F. X.; Lan, G.; Lin, W. J. Am. Chem. Soc. 2016, 138, 12234.
[80]
Kung, C. W.; Platero-Prats, A. E.; Drout, R. J.; Kang, J.; Wang, T. C.; Audu, C. O.; Hersam, M. C.; Chapman, K. W.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces 2018, 10, 30532.
[81]
Li, Z.; Peters, A. W.; Bernales, V.; Ortuno, M. A.; Schweitzer, N. M.; DeStefano, M. R.; Gallington, L. C.; Platero-Prats, A. E.; Chapman, K. W.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. ACS Cent. Sci. 2017, 3, 31.
[82]
Liu, J.; Redfern, L. R.; Liao, Y.; Islamoglu, T.; Atilgan, A.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces 2019, 11, 47822.
[83]
Noh, H.; Cui, Y.; Peters, A. W.; Pahls, D. R.; Ortuno, M. A.; Vermeulen, N. A.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2016, 138, 14720.
[84]
Wang, Y. -H.; Chuang, C. -H.; Chiu, T. -A.; Kung, C. -W.; Yu, W. -Y. J. Phys. Chem. C 2020, 124, 12521.
[85]
Wang, Y. -S.; Chen, Y. -C.; Li, J. -H.; Kung, C. -W. Eur. J. Org. Chem. 2019, 2019, 3036.
[86]
Yuan, S.; Chen, Y. P.; Qin, J.; Lu, W.; Wang, X.; Zhang, Q.; Bosch, M.; Liu, T. F.; Lian, X.; Zhou, H. C. Angew. Chem. Int. Ed. 2015, 54, 14696.
[87]
Noh, H.; Kung, C. -W.; Otake, K. -i.; Peters, A. W.; Li, Z.; Liao, Y.; Gong, X.; Farha, O. K.; Hupp, J. T. ACS Catal. 2018, 8, 9848.
[88]
Kung, C. -W.; Audu, C. O.; Peters, A. W.; Noh, H.; Farha, O. K.; Hupp, J. T. ACS Energy Lett. 2017, 2, 2394.
[89]
He, D.; Niu, H.; He, S.; Mao, L.; Cai, Y.; Liang, Y. Water Res. 2019, 162, 151.
[90]
Li, X.; Zhang, Z.; Xiao, W.; Deng, S.; Chen, C.; Zhang, N. J. Mater. Chem. A 2019, 7, 14504.
[91]
Bhattacharyya, S.; Rambabu, D.; Maji, T. K. J. Mater. Chem. A 2019, 7, 21106.
[92]
Li, Y.; Jin, J.; Wang, D.; Lv, J.; Hou, K.; Liu, Y.; Chen, C.; Tang, Z. Nano Res. 2018, 11, 3294.
[93]
He, J.; Dong, J.; Hu, Y.; Li, G.; Hu, Y. Nanoscale 2019, 11, 6089.
[94]
Zhu, W.; Chen, M.; Liu, Y.; Tian, Y.; Song, Z.; Song, G.; Zhang, X. Nanoscale 2019, 11, 20630.
[95]
Liu, C.; Luo, L.; Zeng, L.; Xing, J.; Xia, Y.; Sun, S.; Zhang, L.; Yu, Z.; Yao, J.; Yu, Z.; Akakuru, O. U.; Saeed, M.; Wu, A. Small 2018, 14,e1801851.
[96]
Zhang, H.; Zhang, Q.; Liu, C.; Han, B. Biomater. Sci. 2019, 7, 1696.
[97]
Deng, X.; Liang, S.; Cai, X.; Huang, S.; Cheng, Z.; Shi, Y.; Pang, M.; Ma, P. a.; Lin, J. Nano Lett. 2019, 19, 6772.
[98]
Zhang, L.; Liu, C.; Gao, Y.; Li, Z.; Xing, J.; Ren, W.; Zhang, L.; Li, A.; Lu, G.; Wu, A.; Zeng, L. Adv. Healthc. Mater. 2018, 7,e1801144.
[99]
Fang, L.; Wang, W.; Liu, Y.; Xie, Z.; Chen, L. Dalton Trans. 2017, 46, 8933.
[100]
Yang, Q.; Xu, Q.; Yu, S. -H.; Jiang, H. -L. Angew. Chem. Int. Ed. 2016, 55, 3685.
[101]
Wang, L.; Li, S. R.; Chen, Y. Z.; Jiang, H. L. Small 2021, e2004481.
[102]
Wu, H.; Gu, D.; Xia, S.; Chen, F.; You, C.; Sun, B. Biomater. Sci. 2021, 9, 1020.
[103]
Sui, C.; Tan, R.; Chen, Y.; Yin, G.; Wang, Z.; Xu, W.; Li, X. Bioconjug. Chem. 2021, 32, 318.
[104]
Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. ACS Nano 2009, 3, 2919.
[105]
Zou, L.; Wang, H.; He, B.; Zeng, L.; Tan, T.; Cao, H.; He, X.; Zhang, Z.; Guo, S.; Li, Y. Theranostics 2016, 6, 762.
[106]
Zhu, H.; Cheng, P.; Chen, P.; Pu, K. Biomater. Sci. 2018, 6, 746.
[107]
Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B. Nano Today 2018, 19, 146.
[108]
Gong, H.; Dong, Z.; Liu, Y.; Yin, S.; Cheng, L.; Xi, W.; Xiang, J.; Liu, K.; Li, Y.; Liu, Z. Adv. Funct. Mater. 2014, 24, 6492.
[109]
Arvizo, R. R.; Bhattacharyya, S.; Kudgus, R. A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Chem. Soc. Rev. 2012, 41, 2943.
[110]
von Maltzahn,, G.; Park,, J. H.; Agrawal,, A.; Bandaru,, N. K.; Das,, S. K.; Sailor,, M. J.; Bhatia,, S. N. Cancer Res. 2009, 69, 3892.
[111]
Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Nat. Nanotechnol. 2011, 6, 28.
[112]
Guo, T.; Wu, Y.; Lin, Y.; Xu, X.; Lian, H.; Huang, G.; Liu, J. Z.; Wu, X.; Yang, H. H. Small 2018, 14, 1702815.
[113]
Lu, J.; Yang, J.; Carvalho, A.; Liu, H.; Lu, Y.; Sow, C. H. Acc. Chem. Res. 2016, 49, 1806.
[114]
Liu, J.; Liu, T.; Du, P.; Zhang, L.; Lei, J. Angew. Chem. Int. Ed. 2019, 58, 7808.
[115]
Biswal, B. P.; Shinde, D. B.; Pillai, V. K.; Banerjee, R. Nanoscale 2013, 5, 10556.
[116]
Tian, Z.; Yao, X.; Ma, K.; Niu, X.; Grothe, J.; Xu, Q.; Liu, L.; Kaskel, S.; Zhu, Y. ACS Omega 2017, 2, 1249.
[117]
Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee, S. T.; Liu, Z. Angew. Chem. Int. Ed. 2011, 50, 7385.
[118]
Li, W.; Wang, J.; Ren, J.; Qu, X. J. Am. Chem. Soc. 2014, 136, 2248.
[119]
Cheng, L.; Yang, K.; Li, Y.; Zeng, X.; Shao, M.; Lee, S. T.; Liu, Z. Biomaterials 2012, 33, 2215.
[120]
Cheng, Z.; Dai, Y.; Kang, X.; Li, C.; Huang, S.; Lian, H.; Hou, Z.; Ma, P.; Lin, J. Biomaterials 2014, 35, 6359.
[121]
Yang, W.; Li, X.; Chi, D.; Zhang, H.; Liu, X. Nanotechnol. 2014, 25, 482001.
[122]
Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Chem. Rev. 2015, 115, 395.
[123]
Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X. Chem. Rev. 2014, 114, 5161.
[124]
Liu, Q.; Yang, T.; Feng, W.; Li, F. J. Am. Chem. Soc. 2012, 134, 5390.
[125]
Gao, S.; Zheng, P.; Li, Z.; Feng, X.; Yan, W.; Chen, S.; Guo, W.; Liu, D.; Yang, X.; Wang, S.; Liang, X. J.; Zhang, J. Biomaterials 2018, 178, 83.
[126]
Deng, K.; Hou, Z.; Li, X.; Li, C.; Zhang, Y.; Deng, X.; Cheng, Z.; Lin, J. Sci. Rep. 2015, 5, 7851.
[127]
Yang, D.; Xu, J.; Yang, G.; Zhou, Y.; Ji, H.; Bi, H.; Gai, S.; He, F.; Yang, P. Chem. Eng. J. 2018, 344, 363.
[128]
Cheng, L.; Gong, H.; Zhu, W.; Liu, J.; Wang, X.; Liu, G.; Liu, Z. Biomaterials 2014, 35, 9844.
[129]
Yang, Y.; Jing, L.; Li, X.; Lin, L.; Yue, X.; Dai, Z. Theranostics 2017, 7, 466.
[130]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Zhao, G.; Xia, G.; Li, R.; Liu, Z.; Tian, J.; Wang, H.; Guo, Z.; Wang, H.; Chen, Q. Biomaterials 2016, 100, 27.
[131]
Valko, M.; Morris, H.; Cronin, M. T.D. Chem. Mater. 2005, 12, 1161.
[132]
Wang, D.; Zhou, J.; Shi, R.; Wu, H.; Chen, R.; Duan, B.; Xia, G.; Xu, P.; Wang, H.; Zhou, S.; Wang, C.; Wang, H.; Guo, Z.; Chen, Q. Theranostics 2017, 7, 4605.
[133]
Dong, W.; Li, Y.; Niu, D.; Ma, Z.; Gu, J.; Chen, Y.; Zhao, W.; Liu, X.; Liu, C.; Shi, J. Adv. Mater. 2011, 23, 5392.
[134]
Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Adv. Mater. 2012, 24, 1868.
[135]
Tang, S.; Huang, X.; Zheng, N. Chem. Commun. (Camb) 2011, 47, 3948.
[136]
Liu, Y.; Bai, J.; Jia, X.; Jiang, X.; Guo, Z. ACS Appl. Mater. Interfaces 2015, 7, 112.
[137]
Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F. Angew. Chem. Int. Ed. 2011, 50, 891.
[138]
Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. ACS Nano 2013, 7, 2541.
[139]
Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. Adv. Mater. 2012, 24, 5586.
[140]
Guo, R.; Peng, H.; Tian, Y.; Shen, S.; Yang, W. Small 2016, 12, 4541.
[141]
Wang, Y.; Yang, T.; Ke, H.; Zhu, A.; Wang, Y.; Wang, J.; Shen, J.; Liu, G.; Chen, C.; Zhao, Y.; Chen, H. Adv. Mater. 2015, 27, 3874.
[142]
Li, B.; Wang, X.; Chen, L.; Zhou, Y.; Dang, W.; Chang, J.; Wu, C. Theranostics 2018, 8, 4086.
[143]
Zheng, X.; Wang, L.; Liu, M.; Lei, P.; Liu, F.; Xie, Z. Chem. Mater. 2018, 30, 6867.
[144]
Yang, Y.; Liu, J.; Liang, C.; Feng, L.; Fu, T.; Dong, Z.; Chao, Y.; Li, Y.; Lu, G.; Chen, M.; Liu, Z. ACS Nano 2016, 10, 2774.
[145]
Chen, L.; Zhang, J.; Zhou, X.; Yang, S.; Zhang, Q.; Wang, W.; You, Z.; Peng, C.; He, C. Acta Biomater. 2019, 86, 406.
[146]
Cai, X.; Liu, B.; Pang, M.; Lin, J. Dalton Trans. 2018, 47, 16329.
[147]
Cai, W.; Gao, H.; Chu, C.; Wang, X.; Wang, J.; Zhang, P.; Lin, G.; Li, W.; Liu, G.; Chen, X. ACS Appl. Mater. Interfaces 2017, 9, 2040.
[148]
Wang, C.; Xu, H.; Liang, C.; Liu, Y.; Li, Z.; Yang, G.; Cheng, L.; Li, Y.; Liu, Z. ACS Nano 2013, 7, 6782.
[149]
Cai, X.; Deng, X.; Xie, Z.; Shi, Y.; Pang, M.; Lin, J. Chem. Eng. J. 2019, 358, 369.
[150]
Chen, X.; Zhang, M.; Li, S.; Li, L.; Zhang, L.; Wang, T.; Yu, M.; Mou, Z.; Wang, C. J. Mater. Chem. B 2017, 5, 1772.
[151]
Huang, J.; Li, N.; Zhang, C.; Meng, Z. ACS Appl. Mater. Interfaces 2018, 10, 38729.
[152]
Repenko, T.; Fokong, S.; De Laporte, L.; Go, D.; Kiessling, F.; Lammers, T.; Kuehne, A. J. Chem. Commun. (Camb) 2015, 51, 6084.
[153]
Wu, Q.; Niu, M.; Chen, X.; Tan, L.; Fu, C.; Ren, X.; Ren, J.; Li, L.; Xu, K.; Zhong, H.; Meng, X. Biomaterials 2018, 162, 132.
[154]
Zhang, Y.; Wang, L.; Liu, L.; Lin, L.; Liu, F.; Xie, Z.; Tian, H.; Chen, X. ACS Appl. Mater. Interfaces 2018, 10, 41035.
[155]
Wang, D.; Wu, H.; Zhou, J.; Xu, P.; Wang, C.; Shi, R.; Wang, H.; Wang, H.; Guo, Z.; Chen, Q. Adv. Sci. 2018, 5, 1800287.
[156]
Li, S.; Zhang, L.; Liang, X.; Wang, T.; Chen, X.; Liu, C.; Li, L.; Wang, C. Chem. Eng. J. 2019, 378, 122175.
[157]
Wang, W.; Wang, L.; Li, Y.; Liu, S.; Xie, Z.; Jing, X. Adv. Mater. 2016, 28, 9320.
[158]
Varadi, L.; Luo, J. L.; Hibbs, D. E.; Perry, J. D.; Anderson, R. J.; Orenga, S.; Groundwater, P. W. Chem. Soc. Rev. 2017, 46, 4818.
[159]
Whiteley, M.; Diggle, S. P.; Greenberg, E. P. Nature 2017, 551, 313.
[160]
D'Elia, R. V.; Woods, S.; Butcher, W.; McGahon, J.; Khadke, S.; Perrie, Y.; Williamson, E. D. Roberts, C. W.; J. Control. Release 2019, 298, 202.
[161]
Raffatellu, M. Nat. Med. 2018, 24, 1097.
[162]
Schlaich, C.; Li, M.; Cheng, C.; Donskyi, I. S.; Yu, L.; Song, G.; Osorio, E.; Wei, Q.; Haag, R. Adv. Mater. Interfaces 2018, 5, 1701254.
[163]
Wang, W.; Hao, C.; Sun, M.; Xu, L.; Wu, X.; Xu, C.; Kuang, H. Adv. Funct. Mater. 2018, 28, 1805112.
[164]
Joseph, R.; Naugolny, A.; Feldman, M.; Herzog, I. M.; Fridman, M.; Cohen, Y. J. Am. Chem. Soc. 2016, 138, 754.
[165]
Zhang, Y.; Sun, P.; Zhang, L.; Wang, Z.; Wang, F.; Dong, K.; Liu, Z.; Ren, J.; Qu, X. Adv. Funct. Mater. 2019, 29,1808594.
[166]
Song, Z.; Wu, Y.; Cao, Q.; Wang, H.; Wang, X.; Han, H. Adv. Funct. Mater. 2018, 28,1800011.
[167]
Nie, X.; Wu, S.; Huang, F.; Wang, Q.; Wei, Q. ACS Appl. Mater. Interfaces 2021, 13, 2245.
[168]
Luo, Y.; Liu, X.; Tan, L.; Li, Z.; Yeung, K. W.K.; Zheng, Y.; Cui, Z.; Liang, Y.; Zhu, S.; Li, C.; Wang, X.; Wu, S. Chem. Eng. J. 2021, 405, 126730.
[169]
Liu, J.; Wu, D.; Zhu, N.; Wu, Y.; Li, G. Trend Food Sci. Technol. 2021, 109, 413.
[170]
Min, H.; Wang, J.; Qi, Y.; Zhang, Y.; Han, X.; Xu, Y.; Xu, J.; Li, Y.; Chen, L.; Cheng, K.; Liu, G.; Yang, N.; Li, Y.; Nie, G. Adv. Mater. 2019, 31,e1808200.
[171]
Yang, Y.; Ma, L.; Cheng, C.; Deng, Y.; Huang, J.; Fan, X.; Nie, C.; Zhao, W.; Zhao, C. Adv. Funct. Mater. 2018, 28,1705708.
[172]
Yu, X.; He, D.; Zhang, X.; Zhang, H.; Song, J.; Shi, D.; Fan, Y.; Luo, G.; Deng, J. ACS Appl. Mater. Interfaces 2019, 11, 1766.
[173]
Phan, T. N.; Buckner, T.; Sheng, J.; Baldeck, J. D.; Marquis, R. E. Oral Microbiol. Immun. 2004, 19, 31.
[174]
Liu, Z.; Tan, L.; Liu, X.; Liang, Y.; Zheng, Y.; Yeung, K. W.K.; Cui, Z.; Zhu, S.; Li, Z.; Wu, S. Colloids Surf. B 2020, 188, 110781.
[175]
Pan, X.; Bai, L.; Wang, H.; Wu, Q.; Wang, H.; Liu, S.; Xu, B.; Shi, X.; Liu, H. Adv. Mater. 2018, 30,e1800180.
[176]
Li, S.; Cheng, C.; Sagaltchik, A.; Pachfule, P.; Zhao, C.; Thomas, A. Adv. Funct. Mater. 2019, 29, 1807419.
[177]
Yang, Y.; Deng, Y.; Huang, J.; Fan, X.; Cheng, C.; Nie, C.; Ma, L.; Zhao, W.; Zhao, C. Adv. Funct. Mater. 2019, 29, 1900143.
[178]
Yang, Y.; Wu, X.; He, C.; Huang, J.; Yin, S.; Zhou, M.; Ma, L.; Zhao, W.; Qiu, L.; Cheng, C.; Zhao, C. ACS Appl. Mater. Interfaces 2020, 12, 13698.
[179]
Fan, X.; Yang, F.; Huang, J.; Yang, Y.; Nie, C.; Zhao, W.; Ma, L.; Cheng, C.; Zhao, C.; Haag, R. Nano Lett. 2019, 19, 5885.
[180]
Luo, Y.; Li, J.; Liu, X.; Tan, L.; Cui, Z.; Feng, X.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K. W.K.; Yang, C.; Wang, X.; Wu, S. ACS Cent. Sci. 2019, 5, 1591.
[181]
Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K. W.K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Yuan, X.; Feng, X.; Yang, C.; Wu, S. Appl. Catal. B 2020, 261, 118248.
[182]
Yu, P.; Han, Y.; Han, D.; Liu, X.; Liang, Y.; Li, Z.; Zhu, S.; Wu, S. J. Hazard. Mater. 2020, 390, 122126.
[183]
Enserink, M. Science 2013, 341, 1050.
[184]
Orcutt, M.; Rayes, D.; Tarakji, A.; Katoub, M.; Spiegel, P.; Rubenstein, L.; Jabbour, S.; Alkhalil, M.; Alabbas, M.; Abbara, A. Lancet 2019, 394, 100.
[185]
Bobbitt, N. S.; Mendonca, M. L.; Howarth, A. J.; Islamoglu, T.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Chem. Soc. Rev. 2017, 46, 3357.
[186]
DeCoste, J. B.; Peterson, G. W. Chem. Rev. 2014, 114, 5695.
[187]
Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S. -Y.; Hupp, J. T.; Farha, O. K. Coord. Chem. Rev. 2017, 346, 101.
[188]
Yang, M. Q.; Gao, M.; Hong, M.; Ho, G. W. Adv. Mater. 2018, 30, e1802894.
[189]
Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Angew. Chem. Int. Ed. 2014, 53, 11478.
[190]
Wang, F.; Huang, Y.; Chai, Z.; Zeng, M.; Li, Q.; Wang, Y.; Xu, D. Chem. Sci. 2016, 7, 6887.
[191]
Li, L.; Yang, W.; Yang, Q.; Guan, Q.; Lu, J.; Yu, S. -H.; Jiang, H. -L. ACS Catal. 2020, 10, 7753.
[192]
Yang, Q.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2019, 58, 3511.
[193]
Wang, S. S.; Jiao, L.; Qian, Y.; Hu, W. C.; Xu, G. Y.; Wang, C.; Jiang, H. L. Angew. Chem. Int. Ed. 2019, 58, 10713.
[194]
Xiao, J. -D.; Jiang, H. -L. Acc. Chem. Res. 2018, 52, 356.
[195]
Chen, Y. -Z.; Wang, Z. U.; Wang, H.; Lu, J.; Yu, S. -H.; Jiang, H. -L. J. Am. Chem. Soc. 2017, 139, 2035.
文章导航

/