综述

纳米零价铁富集水溶液中铀的表面化学及应用展望

  • 滑熠龙 ,
  • 李冬涵 ,
  • 顾天航 ,
  • 王伟 ,
  • 李若繁 ,
  • 杨建平 ,
  • 张伟贤
展开
  • a 东华大学材料科学与工程学院 上海 200051
    b 南华大学资源环境与安全工程学院 衡阳 421001
    c 同济大学污染控制与资源化研究国家重点实验室 上海 200092
    d 华南农业大学 岭南现代农业科学与技术广东省实验室 广州 510642

滑熠龙, 南华大学环境科学与工程系教师. 同济大学环境科学与工程专业博士, 东华大学材料科学与工程专业博士后. 主要从事铁基纳米材料的研发及应用, 放射性废水污染控制及资源化的研究及实践工作. 已成功应用nZVI连续流工艺治理铀尾矿库含铀废水.

李冬涵, 南华大学资源环境与安全工程学院2020级硕士生, 研究方向为资源与环境.

顾天航, 同济大学环境科学与工程学院2018级博士生, 研究方向为纳米零价铁富集水中稀有元素.

王伟, 博士, 同济大学化学专业博士后, 主要从事铁基纳米材料用于重金属污染控制及资源化方面的研究及实践工作, 作为主要完成人之一将铁基纳米技术成功应用于复杂多金属废水处理工程, 已发表SCI论文10余篇.

杨建平, 东华大学研究员、博士生导师. 2013年获复旦大学无机化学博士学位, 在同济大学、澳大利亚伍伦贡大学、澳大利亚莫纳什大学进行博士后和访学研究. 2016年加入东华大学从事无机材料界面调控及环境资源应用研究, 发表SCI论文130多篇, 总引用10000余次, H指数46. 担任Environmental Protection Research副主编; 荣获上海市东方学者特聘教授(2017年)、上海千人(2018年)、霍英东青年基金(2020年); 入选英国皇家化学会JMCA和ChemComm新锐科学家(Emerging Investigators, 2020和2021年).

张伟贤, 教授, 博士生导师, “千人计划”国家特聘专家, 2011年5月起任污染控制与资源化研究国家重点实验室主任. 1984年毕业于同济大学, 1996年获美国约翰·霍普金斯大学(The Johns Hopkins University)环境工程博士学位, 曾任美国里海大学(Lehigh University)教授. 2000年获美国国家科学基金会(NSF)青年教授奖(CAREER AWARD). 主持过国家自然科学基金海外及港澳学者合作研究基金及多项国家自然科学基金. 长期致力于环境中重金属及持久性有机污染物的基础与应用研究, 是环境纳米技术的先驱之一, 纳米零价铁技术的创始研究者. 在纳米零价铁合成、表征、污染物反应机理、应用于地下水修复及废水处理方面发表了系列经典论文.

收稿日期: 2021-04-18

  网络出版日期: 2021-06-30

基金资助

国家自然科学基金(41772243); 国家自然科学基金(51978488); 国家自然科学基金(21277102); 湖南省教育厅基金(18C0432); 湖南省自然科学基金(2020JJ5489); 广东省重点领域研发计划项目(2020B0202080001)

Enrichment of Uranium from Aqueous Solutions with Nanoscale Zero-valent Iron: Surface Chemistry and Application Prospect

  • Yilong Hua ,
  • Donghan Li ,
  • Tianhang Gu ,
  • Wei Wang ,
  • Ruofan Li ,
  • Jianping Yang ,
  • Wei-xian Zhang
Expand
  • a College of Materials Science and Engineering, Donghua University, Shanghai 200051, China
    b School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
    c State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
    d Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China

Received date: 2021-04-18

  Online published: 2021-06-30

Supported by

National Natural Science Foundation of China(41772243); National Natural Science Foundation of China(51978488); National Natural Science Foundation of China(21277102); Research Foundation of Education Bureau of Hunan Province, China(18C0432); Natural Science Foundation of Hunan Province, China(2020JJ5489); Key-Area Research and Development Program of Guangdong Province(2020B0202080001)

摘要

由于铀矿采冶、核能利用等类活动的影响, 铀引起的水体污染问题日益严重. 纳米零价铁(nanoscale zero-valent iron, nZVI)及其复合材料可高效富集水溶液中低浓度的铀, 在放射性废水的处理与铀的资源回收方面具有巨大的应用潜力. 但是, 不同研究对nZVI分离铀的机理和性能尚未形成一致的解释. 因此, 本综述归纳了nZVI分离铀的研究进展, 概括了溶液及固相反应机理(如吸附作用、还原作用、沉淀作用), 重点分析了水质因素(如pH、U(VI)浓度、阳离子、阴离子、溶解氧)的影响机制. 后续研究可注重分析铀废水中nZVI的结构转化规律及水质因素的协同作用对nZVI固定铀的机理、性能的影响; 并基于放射性废水的水质或水处理工艺的特征, 优化nZVI材料结构且评估其处理放射性废水的长期稳定性和生态毒性; 确定nZVI固定铀的性能与水质组分及水处理工艺运行参数的数学相关性, 建立监测和调控工艺的方法.

本文引用格式

滑熠龙 , 李冬涵 , 顾天航 , 王伟 , 李若繁 , 杨建平 , 张伟贤 . 纳米零价铁富集水溶液中铀的表面化学及应用展望[J]. 化学学报, 2021 , 79(8) : 1008 -1022 . DOI: 10.6023/A21040160

Abstract

In the processes of uranium mining and nuclear power utilization, water pollution caused by radioactive contaminants (e.g., uranium) is becoming increasingly serious. Nanoscale zero-valent iron (nZVI) and its composites can be used to enrich low-concentrated uranium ions from radioactive wastewater effectively. Published works have demonstrated that nZVI has great application potential to treat uranium-contanined radioactive wastewater. However, published researches on the performance and mechanisms for U(VI) immobilization by nZVI between different papers are not unanimous. Based on the research progress, this review summarizes the aqueous and solid reaction mechanisms (e.g., adsorption, reduction and precipitation) between nZVI and U(VI) ions, and specifically discusses the effects of solution factors (e.g., pH, U(VI) concentration, cations, anions and dissolved oxygen) on U(VI) immobilization. Before the field-scale application of nZVI to remedy uranium wastewater, deep researches should be conducted to investigate: (i) the phase transformation of nZVI in uranium wastewater and the synergistic effect of solution factors on the ability of nZVI to separate uranium; (ii) based on the characteristics of radioactive solution and wastewater treatment processes, the structure of nZVI particles needs to be optimized and their long-term stability and ecotoxicity needs to be evaluated; (iii) confirm the mathematical correlation between the performation of nZVI to immobilize uranium and wastewater components and operation parameters, and then extabilish the monitoring and regulating method for wastewater treatment technology.

参考文献

[1]
Canu, I. G.; Jacob, S.; Cardis, E.; Wild, P.; Cae, S. r; Acker, A.; Tirmarche, M.; Laurier, D. Am. J. Epidemiol. 2011, 68, Suppl 1.
[2]
Träber, S. C.; Höllriegl, V.; Li, W. -B.; Czeslik, U.; Rühm, W.; Oeh, U.; Michalke, B. Environ. Sci. Technol. 2014, 48, 24.
[3]
Wu, Y.; Wang, Y. -X.; Xie, X. -J. Sci. Total Environ. 2014, 472, 809.
[4]
Winde, F.; Erasmus, E.; Geipel, G. Sci. Total Environ. 2017, 574, 400.
[5]
Bister, S.; Birkhan, J.; Lüllau, T.; Bunka, M.; Solle, A.; Stieghorst, C.; Riebe, B.; Michel, R.; Walther, C. J. Environ. Radioactiv. 2015, 144, 21.
[6]
Cinelli, G.; Tondeur, F.; Dehandschutter, B.; Bossew, P.; Tollefsen, T.; De Cort, M. J. Environ. Radioactiv. 2017, 166, 220.
[7]
Haribala, ; Hu, B.; Wang, C.; Gerilemandahu, ; Xu, X.; Zhang, S.; Bao, S.; Li, Y. China, Ecotox. Environ. Safe. 2016, 130, 185.
[8]
Shelley, R.; Kim, N. -S.; Parsons, P. J.; Lee, B. -K.; Agnew, J.; Jaar, B. G.; Steuerwald, A. J.; Matanoski, G.; Fadrowski, J.; Schwartz, B. S.; Todd, A. C.; Simon, D.; Weaver, V. M. J. Expo. Sci. Env. Epid. 2013, 24, 58.
[9]
Kreuzer, M.; Fenske, N.; Schnelzer, M.; Walsh, L. Brit. J. Cancer 2015, 113, 1367.
[10]
Ohba, T.; Tanigawa, K.; Liutsko, L. Environ. Int. 2021, 148, 106379.
[11]
Murugan, R.; Kavasi, N.; Sahoo, S. K.; Omori, Y.; Sorimachi, A.; Takahashi, H.; Aono, T. J. Environ. Radioactiv. 2021, 232, 106568-106568.
[12]
Hirouchi, J.; Takahara, S.; Yoshimura, K. J. Environ. Radioactiv. 2021, 232, 106572-106572.
[13]
Zuykov, M.; Fowler, S. W.; Archambault, P.; Spiers, G.; Schindler, M. Mar. Pollut. Bull. 2020, 151, 110860.
[14]
Miki, S.; Fujimoto, K.; Shigenobu, Y.; Ambe, D.; Kaeriyama, H.; Takagi, K.; Ono, T.; Watanabe, T.; Sugisaki, H.; Morita, T. Fish. Oceanogr. 2017, 26, 221.
[15]
Wang, Y. -N. China Econ. Wkly. 2020, (20), 92-95. (in Chinese)
[15]
( 王亦楠, 中国经济周刊, 2020, (20), 92-95.)
[16]
Jin, YGlob. Times 2021, 15. (in Chinese)
[16]
( 金嬴, 环球时报, 2021, 15.)
[17]
Zhang, Q.; Wang, Y.; Wang, Z.; Zhang, Z.; Wang, X.; Yang, Z. J. Alloy. Compd. 2021, 852, 156993.
[18]
Zheng, H.; Ren, X.; Zhang, X.; Song, G.; Chen, D.; Chen, C. J. Mol. Liq. 2020, 297, C.
[19]
Zhao, X.; Liu, W.; Cai, Z.; Fu, J.; Duan, J.; Zhao, D.; M, Bozack.; Feng, Y.. Colloid Surface A. 2020, 604, 125315.
[20]
Zhang, Y.; Cheng, W.; Huang, Z.; Nie, X.; Chi, F.; Pan, N.; Ding, C. J. Radioanal. Nucl. Ch. 2020, 326, 845.
[21]
Yang, F.; Xie, S.; Wang, G.; Yu, C. W.; Liu, H.; Liu, Y. Environ. Sci. Pollut. R. 2020, 27, 20246.
[22]
Xiao, M.; Hu, R.; Cui, X.; W, Gwenzi.; C, Noubactep. Processes, 2020, 8, 409.
[23]
Xiao, M.; Cui, X.; Hu, R.; W, Gwenzi.; C, Noubactep. Processes, 2020, 8, 1162.
[24]
Xiao, J.; Pang, Z.; Zhou, S.; Chu, L.; Rong, L.; Liu, Y.; Li, J.; Tian, L. Sep. Purif. Technol. 2020, 244, 116667.
[25]
Xiang, S.; Cheng, W.; Chi, F.; Nie, X.; T, Hayat.; N.S, Alharbi. Acs Appl. Nano Mater. 2020, 3, 1131.
[26]
Wang, S.; Wang, L.; Li, Z.; Zhang, P.; Du, K.; Yuan, L.; Ning, S.; Wei, Y.; Shi, W. J. Hazard. Mater. 2020, 408, 124949.
[27]
Wang, J.; Pang, H.; Tang, H.; Yu, S.; Zhu, H.; Wang, X. J. Inorg. Mater. 2020, 35, 373.
[28]
Sharma, N.; Ghosh, A.; Fortner, J. D.; Giammar, D. E. Environ. Sci.-Nano 2020, 7, 2010.
[29]
Liao, H.; Yu, J.; Zhu, W.; Kuang, M.; Duan, T.; Zhang, Y.; Lin, X.; Luo, X.; Zhou, J. Appl. Surf. Sci. 2020, 507, 145075.
[30]
Duan, J.; Ji, H.; Zhao, X.; Tian, S.; Liu, X.; Liu, W.; Zhao, D. Chem. Eng. J. 2020, 393, 124692.
[31]
Zhang, Q.; Zhao, D.; Feng, S.; Wang, Y.; Jin, J.; Alsaedi, A.; Hayat, T.; Chen, C. J. Colloid Interf. Sci. 2019, 552, 735.
[32]
Zhang, H. -M.; Ruan, Y.; Liang, A. -P.; Shih, K. M.; Diao, Z. H.; Su, M. H.; Hou, L. A.; Chen, D. Y.; Lu, H.; Kong, L. J. J. Clean. Prod. 2019, 239, 117873.
[33]
Yu, S.; Wang, X.; Liu, Y.; Chen, Z.; Wu, Y.; Liu, Y.; Pang, H.; Song, G.; Chen, J.; Wang, X. Chem. Eng. J. 2019, 365, 51.
[34]
Wang, M.; Cheng, W.; Wan, T.; Hu, B.; Zhu, Y.; Song, X.; Sun, Y. Chem. Eng. J. 2019, 362, 99.
[35]
Sihn, Y.; Bae, S.; Lee, W. Chemosphere 2019, 215, 626.
[36]
Pang, H.; Diao, Z.; Wang, X.; Ma, Y.; Yu, S.; Zhu, H.; Chen, Z.; Hu, B.; Chen, J.; Wang, X. Chem. Eng. J. 2019, 366, 368.
[37]
Lv, Z.; Yang, S.; Chen, L.; Alsaedi, A.; Hayat, T.; Chen, C. J. Environ. Sci. 2019, 76, 377.
[38]
Li, X.; Li, Y.; Wu, Q.; Zhang, M.; Guo, X.; Li, X.; Ma, L.; Li, S. Chem. Eng. J. 2019, 365, 70.
[39]
Duan, J.; Ji, H.; Liu, W.; Zhao, X.; Han, B.; Tian, S.; Zhao, D. Chem. Eng. J. 2019, 359, 1617.
[40]
Kong, L. -J.; Zhang, H. -M.; Shih, K. M.; Su, M. -H.; Diao, Z. -H.; Long, J. -Y.; Hou, L. -A.; Song, G.; Chen, D. -Y. J. Hazard. Mater. 2018, 357, 168.
[41]
Hua, Y.; Wang, W.; Huang, X.; Gu, T.; Ding, D.; Ling, L.; Zhang, W. -X. Chemosphere 2018, 201, 603.
[42]
Ding, C. -C.; Cheng, W. -C.; Nie, X. -Q.; Yi, F. -C.; Xiang, S. -H.; Asiri, A. M.; Marwani, H. M. J. Ind. Eng. Chem. 2018, 61, 236.
[43]
Liu, H.; Li, M.; Chen, T.; Chen, C.; N.S., Alharbi.; Hayat, T.; Chen, D.; Zhang, Q.; Sun, Y.; Environ. Sci.Technol. 2017, 51, 9227.
[44]
Hu, S. -H.; Lin, X. -Y.; Zhang, Y. -H.; Shi, M. -L.; Luo, X. -G. J. Radioanal. Nucl. Ch. 2017, 314, 2405.
[45]
Shao, D. -D.; Wang, X. -X.; Wang, X. -L.; Hu, S.; Hayat, T.; Alsaedi, A.; Li, J. -X.; Wang, S. -H.; Hu, J.; Wang, X. -K. Rsc Adv. 2016, 6, 52076.
[46]
Kong, L. -J.; Zhu, Y. -T.; Wang, M.; Li, Z. -X.; Tan, Z. -C.; Xu, R. -B.; Tang, H. -M.; Chang, X. -Y.; Xiong, Y.; Chen, D. -Y. J. Hazard. Mater. 2016, 320, 435.
[47]
Hu, B. -W.; Ye, F.; Ren, X. -M.; Zhao, D. -L.; Sheng, G. -D.; Li, H.; Ma, J. -Y.; Wang, X. -K.; Huang, Y. -Y. Environ. Sci.-Nano, 2016, 3, 1460.
[48]
Zhang, Z.; Liu, J.; Cao, X.; Luo, X.; Hua, R.; Liu, Y.; Yu, X.; He, L.; Liu, Y. J. Hazard. Mater. 2015, 300, 633.
[49]
Ling, L.; Zhang, W. -X. J. Am. Chem. Soc. 2015, 137, 2788.
[50]
Li, Z. -J.; Wang, L.; Yuan, L. -Y.; Xiao, C. -L.; Mei, L.; Zheng, L. -R.; Zhang, J.; Yang, J. -H.; Zhao, Y. -L.; Zhu, Z. -T.; Chai, Z. -F.; Shi, W. -Q. J. Hazard. Mater. 2015, 290, 26.
[51]
Hua, Y. -L.; Wang, W.; Hu, N.; Gu, T.; Ling, L.; Zhang, W. -X. Environ. Sci.-Nano 2021, 8, 666.
[52]
Sun, Y. -P.; Li, X. -Q.; Cao, J.; Zhang, W. -X.; Wang, H. -P. Adv. Colloid Interfac. 2006, 120, 47.
[53]
Kumar, M. A.; Bae, S.; Han, S.; Chang, Y.; Lee, W. J. Hazard. Mater. 2017, 340, 399.
[54]
Bhattacharjee, S.; Ghoshal, S. Environ. Sci. Technol. 2016, 50, 8631.
[55]
Nunez, Garcia, A.; Boparai,, H. K.; O'Carroll,, D. M. Environ. Sci. Technol. 2016, 50, 5243.
[56]
Bae, S.; Hanna, K. Environ. Sci. Technol. 2015, 49, 10536.
[57]
Xu, C. -H.; Zhang, B. -L.; Wang, Y. -H.; Shao, Q. -Q.; Zhou, W. -Z.; Fan, D. -M.; Bandstra, J. Z.; Shi, Z. -Q.; Tratnyek, P. G. Environ. Sci. Technol. 2016, 50, 11879.
[58]
He, Y.; Gao, J. -F.; Feng, F. -Q.; Liu, C.; Peng, Y. -Z.; Wang, S. -Y. Chem. Eng. J. 2012, 179, 8.
[59]
Gu, Y.; Wang, B.; He, F.; Bradley, M. J.; Tratnyek, P. G. Environ. Sci. Technol. 2017, 51, 12653.
[60]
Hua, Y. -L.; Xia, X. -F.; Huang, X. -Y.; Ling, L.; Zhang, W. -X. Acta Chim. Sinica 2017, 75, 594. (in Chinese)
[60]
( 滑熠龙, 夏雪芬, 黄潇月, 凌岚, 张伟贤, 化学学报, 2017, 75, 594.)
[61]
Xie, Y.; Dong, H.; Zeng, G.; Zhang, L.; Cheng, Y.; Hou, K.; Jiang, Z.; Zhang, C.; Deng, J. J. Hazard. Mater. 2017, 338, 306.
[62]
Su, Y. -M.; Adeleye, A. S., Keller, A. A., Huang, Y. -X.; Dai, C. -M.; Zhou, X. -F.; Zhang, Y. -L. Water Res. 2015, 74, 47.
[63]
Dong, H.; Deng, J.; Xie, Y.; Zhang, C.; Jiang, Z.; Cheng, Y.; Hou, K.; Zeng, G. J. Hazard. Mater. 2017, 332, 79.
[64]
Ling, L.; Huang, X. -Y.; Li, M.; Zhang, W. -X. Environ. Sci.Technol. 2017, 51, 14293.
[65]
Gu, T. -H.; Shi, J. -M.; Hua, Y. -L.; Liu, J.; Wang, W.; Zhang, W. -X. Acta Chim. Sinica 2017, 75, 991. (in Chinese)
[65]
( 顾天航, 石君明, 滑熠龙, 刘静, 王伟, 张伟贤, 化学学报, 2017, 75, 991.)
[66]
Ling, L.; Huang, X. -Y.; Zhang, W. -X. Adv. Mater. 2018, 30, 1705703.
[67]
Huang, X. -Y.; Wang, W.; Ling, L.; Zhang, W. -X. Acta Chim. Sinica 2017, 75, 529. (in Chinese)
[67]
( 黄潇月, 王伟, 凌岚, 张伟贤, 化学学报, 2017, 75, 529.)
[68]
Wang, W.; Li, S. -L.; Lei, H.; Pan, B. -C.; Zhang, W. -X. Chem. Eng. J. 2015, 260, 616.
[69]
Li, S. -L.; Wang, W.; Liu, Y. -Y.; Zhang, W. -X. Chem. Eng. J. 2014, 254, 115.
[70]
Elliott, D. W.; Zhang, W. -X. Environ. Sci. Technol. 2001, 35, 4922.
[71]
Yan, S.; Hua, B.; Bao, Z. -Y.; Yang, J.; Liu, C. -X.; Deng, B. -L. Environ. Sci. Technol. 2010, 44, 7783.
[72]
Tsarev, S.; Collins, R. N.; Ilton, E. S.; Fahy, A.; Waite, T. D. Environ. Sci.-Nano 2017, 4, 1304.
[73]
Riba, O.; Scott, T. B.; Ragnarsdottir, K. V.; Allen, G. C. Geochim. Cosmochim. Ac. 2008, 72, 4047.
[74]
Burghardt, D.; Kassahun, A. Environ. Geol. 2005, 49, 314.
[75]
Dickinson, M.; Scott, T. B. J. Hazard. Mater. 2010, 178, 171.
[76]
Li, X. -Y.; Zhang, M.; Liu, Y. -B.; Li, X.; Yang, B.; Hua, R.; Liu, Y. -H. Chin. J. Nonferrous Met. 2015, 25, 3505. (in Chinese)
[76]
( 李小燕, 张明, 刘义保, 李寻, 杨波, 花榕, 刘云海, 中国有色金属学报, 2015, 25, 3505.)
[77]
Crane, R. A.; Pullin, H.; Scott, T. B. Chem. Eng. J. 2015, 277, 252.
[78]
Ding, C.; Cheng, W.; Sun, Y.; Wang, X.; Geochim. Cosmochim. Ac. 2015, 165, 86.
[79]
Chen, H. -J.; Huang, H. -S.; Zhang, Z. -B.; Liu, Y. -H; Wang, X. -K. Acta Chim. Sinica 2017, 75, 560. (in Chinese)
[79]
( 陈海军, 黄舒怡, 张志宾, 刘云海, 王祥科, 化学学报, 2017, 75, 560.)
[80]
Hu, B.; Mei, X.; Li, X.; Hu, J.; Xu, D.; Ma, J.; Huang, Y. J. Mol. Liq. 2017, 237, 1.
[81]
Crane, R. A.; Scott, T. J. Nanopart. Res. 2014, 16, 2813.
[82]
Xu, J. -L.; Li, Y. -L.; Jing, C.; Zhang, H. -C.; Ning, Y. J. Radioanal. Nucl. Ch. 2014, 299, 329.
[83]
Crane, R.; Pullin, H.; Macfarlane, J.; Silion, M.; Popescu, I.; Andersen, M.; Calen, V.; Scott, T. J. Environ. Eng. 2015, 141, 04015011.
[84]
Jing, C.; Li, Y.; Cui, R.; Xu, J. J. Radioanal. Nucl. Ch. 2015, 304, 859.
[85]
Sheng, G. -D.; Yang, P. -J.; Tang, Y. -N.; Hu, Q. -Y.; Li, H.; Ren, X. -M.; Hu, B. -W.; Wang, X. -K.; Huang, Y. -Y. Appl. Catal. B-Environ. 2016, 193, 189.
[86]
Cantrell, K. J.; Kaplan, D. I.; Wietsma, T. W. J. Hazard. Mater. 1995, 42, 201.
[87]
Tsarev, S.; Collins, R. N.; Fahy, A.; Waite, T. D. Environ. Sci. Technol. 2016, 50, 2595.
[88]
Crane, R. A.; Dickinson, M.; Scott, T. B. Chem. Eng. J. 2015, 262, 319.
[89]
Crane, R. A.; Scott, T. B. J. Nanomater. 2014, 956360, 1.
[90]
Crane, R. A.; Scott, T. J. Nanopart. Res. 2014, 16, 2813.
[91]
Popescu, I. C.; Filip, P.; Humelnicu, D.; Humelnicu, I.; Scott, T. B.; Crane, R. A. J. Nucl. Mater. 2013, 443, 250.
[92]
Crane, R. A.; Scott, T. B. J. Nanotech. 2013, 173625, 1.
[93]
Li, X.; Zhang, M.; Liu, Y.; Li, X.; Liu, Y.; Hua, R.; He, C. Water Qual. Expos. Hea. 2013, 5, 31.
[94]
Sheng, G. -D.; Shao, X. -Y.; Li, Y. -M.; Li, J. -F.; Dong, H. -P.; Cheng, W.; Gao, X.; Huang, Y. -Y. J. Phys. Chem. A. 2014, 118, 2952.
[95]
Sun, Y.; Ding, C.; Cheng, W.; Wang, X. J. Hazard. Mater. 2014, 280, 399.
[96]
Yan, S.; Chen, Y. -H.; Xiang, W.; Bao, Z. -Y.; Liu, C. -X.; Deng, B. -L. Chemosphere 2014, 117, 625.
[97]
Li, J. -H.; Yang, L. -X.; Li, J. Q.; Yin, W. -H.; Tao, Y.; Wu, H. -Q.; Luo, F. J. Solid State Chem. 2019, 269, 16.
[98]
Xu, J.; Avellan, A.; Li, H.; Liu, X.; Noel, V.; Lou, Z.; Wang, Y.; Kaegi, R.; Henkelman, G.; Lowry, G. V. Adv. Mater. 2020, 32, 1906910.
[99]
Xu, J.; Avellan, A.; Li, H.; Clark, E. A.; Kaegi, R.; Lowry, G. V. Environ. Sci.Technol. 2020, 54, 13294.
[100]
Li, J.; Zhang, X.; Sun, Y.; Liang, L.; Pan, B. -C.; Zhang, W.; Guan, X. Environ. Sci.Technol. 2017, 91, 13533.
[101]
Qin, H.; Guan, X.; Bandstra, J. Z.; Johnson, R. L.; Tratnyek, P. G. Environ. Sci.Technol. 2018, 52, 13887.
[102]
Kim, E. J.; Kim, J. H.; Azad, A. M.; Chang, Y. -S. Acs Appl. Mater. Inter. 2011, 3, 1457.
[103]
Rajajayavel, S. R.C.; Ghoshal, S. Water Res. 2015, 78, 144.
[104]
Li, J.; Zhang, X.; Liu, M.; Pan, B.; Zhang, W.; Shi, Z.; Guan, X. Environ. Sci. Technol. 2018, 52, 2988.
[105]
Huang, S.; Xu, C.; Shao, Q.; Wang, Y.; Zhang, B.; Gao, B.; Zhou, W.; Tratnyek, P. G. Chem. Eng. J. 2018, 338, 539.
[106]
He, F.; Li, Z.; Shi, S.; Xu, W.; Sheng, H.; Gu, Y.; Jiang, Y.; Xi, B. Environ. Sci. Technol. 2018, 52, 8627.
[107]
Rossberg, A.; Ulrich, K. -U.; Weiss, S.; Tsushima, S.; Hiemstra, T.; Scheinost, A. C. Environ. Sci. Technol. 2009, 43, 1400.
[108]
Kerisit, S.; Felmy, A. R.; Ilton, E. S. Environ. Sci. Technol. 2011, 45, 2770.
[109]
Li, W. -L.; Troyer, L. D.; Lee, S. S.; Wu, J. -W.; Kim, C.; Lafferty, B. J.; Catalano, J. G.; Fortner, J. D. ACS Appl. Mater. Inter. 2017, 9, 13163.
[110]
Skomurski, F. N.; Ilton, E. S.; Engelhard, M. H.; Arey, B. W.; Rosso, K. M. Geochim. Cosmochim. Ac. 2011, 75, 7277.
[111]
Zhu, S.; Leng, Y.; Yan, M.; Tuo, X.; Yang, J.; Almásy, L.; Tian, Q.; Sun, G.; Zou, L.; Li, Q.; Courtois, J.; Zhang, H. Appl. Surf. Sci. 2018, 447, 381.
[112]
Qiu, M. -Q.; Wang, M.; Zhao, Q. -Z.; Hu, B. -W.; Zhu, Y. -L. Chemosphere 2018, 201, 764.
[113]
Collins, R. N.; Rosso, K. M. J. Phys. Chem. A 2017, 121, 6603.
[114]
Ma, B.; Fernandez-Martinez, A.; Kang, M.; Wang, K.; Lewis, A. R.; Maffeis, T. G.G.; Findling, N.; Salas-Colera, E.; Tisserand, D.; Bureau, S.; Charlet, L. Environ. Sci. Technol. 2020, 54, 8104.
[115]
Dewey, C.; Sokaras, D.; Kroll, T.; Bargar, J. R.; Fendorf, S. Environ. Sci. Technol. 2020, 54, 6021.
[116]
Jang, J. -H.; Dempsey, B. A.; Burgos, W. D. Water Res. 2008, 42, 2269.
[117]
Yuan, K.; Renock, D.; Ewing, R. C.; Becker, U. Geochim. Cosmochim. Ac. 2015, 156, 194.
[118]
Ilton, E. S.; Boily, J. F.; Buck, E. C.; Skomurski, F. N.; Rosso, K. M.; Cahill, C. L.; Bargar, J. R.; Felmy, A. R. Environ. Sci. Technol. 2010, 44, 170.
[119]
Wander, M. C.F.; Kerisit, S.; Rosso, K. M.; Schoonen, M. A.A. J. Phys. Chem. A 2006, 110, 9691.
[120]
Latta, D. E.; Gorski, C. A.; Boyanov, M. I.; O'Loughlin, E. J.; Kemner, K. M.; Scherer, M. M. Environ. Sci. Technol. 2012, 46, 778.
[121]
Meinrath, G.; Kato, Y.; Kimura, T.; Yoshida, Z. Radiochim. Acta 1996, 75, 159.
[122]
Langmuir, D. Geochim. Cosmochim. Ac. 1978, 42, 547.
[123]
Grenthe, I.; Fuger, J.; Konings, R. J.M.; Lemire, R. J.; Muller, A. B.; Cregu, C. N.-T.; Wanner, H. J. Nucl. Mater. 1993, 200, 154.
[124]
Jang, J. -H.; Dempsey, B. A.; Burgos, W. D. Water Res. 2006, 40, 2738.
[125]
Cheng, T.; Barnett, M. O.; Roden, E. E.; Zhuang, J. Environ. Sci. Technol. 2004, 38, 6059.
[126]
Mehta, V. S.; Maillot, F.; Wang, Z.; Catalano, J. G.; Giammar, D. E. Chem. Geol. 2014, 364, 66.
[127]
Nico, P. S.; Stewart, B. D.; Fendorf, S. Environ. Sci. Technol. 2009, 43, 7391.
[128]
McBriarty, M. E.; Kerisit, S.; Bylaska, E. J.; Shaw, S.; Morris, K.; Ilton, E. S. Environ. Sci. Technol. 2018, 52, 6282.
[129]
Marshall, T. A.; Morris, K.; Law, G. T.W.; Livens, F. R.; Mosselmans, J. F.W.; Bots, P.; Shaw, S. Environ. Sci. Technol. 2014, 48, 3724.
[130]
McBriarty, M. E.; Soltis, J. A.; Kerisit, S.; Qafoku, O.; Bowden, M. E.; Bylaska, E. J.; De Yoreo, J. J.; Ilton, E. S. Environ. Sci. Technol. 2017, 51, 4970.
[131]
Pullin, H.; Springell, R.; Parry, S.; Scott, T. Chem. Eng. J. 2017, 308, 568.
[132]
Xu, H.; Sun, Y.; Li, J.; Li, F.; Guan, X. Environ. Sci. Technol. 2016, 50, 8214.
[133]
Roh, Y.; Lee, S. Y.; Elless, M. P.; Foss, J. E. Clay Clay Miner. 2000, 48, 266.
[134]
Stewart, B. D.; Nico, P. S.; Fendorf, S. Environ. Sci. Technol. 2009, 43, 4922.
[135]
Roberts, H. E.; Morris, K.; Law, G. T.W.; Mosselmans, J. F.W.; Bots, P.; Kvashnina, K.; Shaw, S. Environ. Sci. Tech. Let. 2017, 4, 421.
[136]
Klimkova, S.; Cernik, M.; Lacinova, L.; Filip, J.; Jancik, D.; Zboril, R. Chemosphere 2011, 82, 1178.
[137]
Liesch, T.; Hinrichsen, S.; Goldscheider, N. Sci. Total Environ. 2015, 536, 981.
[138]
Stumm, W. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, Wiley, New York, 1992, pp.309-325.
[139]
Markich, S. J. Sci. World. J. 2002, 2, 707.
[140]
Dong, W.; Brooks, S. C. Environ. Sci. Technol. 2006, 40, 4689.
[141]
Lu, X. -C.; Wang, H. -M. Elements 2012, 8, 119.
[142]
Cheng, Y.; Holman, H. -Y.; Lin, Z. Elements 2012, 8, 107.
[143]
Abdelouas, A. Elements 2006, 2, 335.
[144]
Liger, E.; Charlet, L.; Van Cappellen, P. Geochim. Cosmochim. Ac. 1999, 63, 2939.
[145]
Wazne, M.; Korfiatis, G. P.; Meng, X. -G. Environ. Sci. Technol. 2003, 37, 3619.
[146]
Villalobos, M.; Trotz, M. A.; Leckie, J. O. Environ. Sci. Technol. 2001, 35, 3849.
[147]
Crane, R. A.; Dickinson, M.; Popescu, I. C.; Scott, T. B. Water Res. 2011, 45, 2931.
[148]
Seder-Colomina, M.; Morin, G.; Brest, J.; Ona-Nguema, G.; Gordien, N.; Pernelle, J. -J.; Banerjee, D.; Mathon, O.; Esposito, G; van Hullebusch, E. D Environ. Sci. Technol. 2015, 49, 14065.
[149]
Du, X.; Boonchayaanant, B.; Wu, W. -M.; Fendorf, S.; Bargar, J.; Criddle, C. S. Environ. Sci. Technol. 2011, 45, 4718.
[150]
Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U. Geochim. Cosmochim. Ac. 2015, 156, 154.
[151]
Hu, S. -H.; Lin, X. -Y.; Zhao, W. -H.; Luo, X. -G. J. Radioanal. Nucl. Ch. 2018, 315, 223.
[152]
Mehta, V. S.; Maillot, F.; Wang, Z.; Catalano, J. G.; Giammar, D. E. Environ. Sci. Technol. 2016, 50, 3128.
[153]
Tang, G.; Luo, W.; Watson, D. B.; Brooks, S. C.; Gu, B. Environ. Sci. Technol. 2013, 47, 5787.
[154]
Li, D.; Kaplan, D. I. J. Hazard. Mater. 2012, 243, 1.
[155]
Missana, T.; García-Gutiérrez, M.; Fernńdez, V. Geochim. Cosmochim. Ac. 2003, 67, 2543.
[156]
Waite, T. D.; Davis, J. A.; Payne, T. E.; Waychunas, G. A.; Xu, N. Geochim. Cosmochim. Ac. 1994, 58, 5465.
[157]
Millero, F. J. Am. Chem. Soc. 1990, 34, 447.
[158]
Millero, F. J.; Izaguirre, M. J. Solution Chem. 1989, 18, 585.
[159]
Missana, T.; Maffiotte, C.; Garcı?a-Gutiérrez, M. J. Colloid Interf. Sci. 2003, 261, 154.
[160]
Lenhart, J. J.; Honeyman, B. D. Geochim. Cosmochim. Ac. 1999, 63, 2891.
[161]
Sherman, D. M.; Peacock, C. L.; Hubbard, C. G. Geochim. Cosmochim. Ac. 2008, 72, 298.
[162]
Moon, H. S.; Komlos, J.; Jaffé, P. R. Environ. Sci. Technol. 2007, 41, 4587.
[163]
Liu, J.; Gu, T. -H.; Wang, W.; Liu, A. -R.; Zhang, W. -X. Acta Chim. Sinica 2019, 77, 121. (in Chinese)
[163]
( 刘静, 顾天航, 王伟, 刘爱荣, 张伟贤, 化学学报, 2019, 77, 121.)
[164]
Scott, T. B.; Popescu, I. C.; Crane, R. A.; Noubactep, C. J. Hazard. Mater. 2011, 186, 280.
[165]
Altmaier, M.; Gaona, X.; Fanghänel, T. Chem. Rev. 2013, 113, 901.
[166]
Zanonato, P.; Di Bernardo, P.; Bismondo, A.; Liu, G.; Chen, X.; Rao, L. J. Am. Chem. Soc. 2004, 126, 5515.
[167]
Ji, Y. Colloid. Surface. A 2014, 444, 1.
[168]
Tewari, P. H.; McLean, A. W. J. Colloid Interf. Sci. 1972, 40, 267.
[169]
Environmental Protection Agency, National Primary Drinking Water Regulations, 2009, p. 6.
[170]
World Health Organization, Guidelines for drinking-water quality: fourth edition incorporating first addendum, 4th ed.+1st add ed., Geneva, 2017, p. 178.
[171]
Health, Canada, Guidelines for Canadian Drinking Water Quality: Guideline Technical Document-Uranium, 1999, pp.7-8.
[172]
Umwelt Bundesamt, Uranium (U) in drinking water: Brief justification of the health limit value of the drinking water supply (10 μg/L U) and the limit value for "baby-appropriate" packaged water (2 μg/L U), 2013, pp.1-3.
文章导航

/