综述

钠离子电池钴酸钠正极材料研究进展

  • 谢佶晟 ,
  • 肖竹梅 ,
  • 左文华 ,
  • 杨勇
展开
  • a 厦门大学化学化工学院 固体表面物理化学国家重点实验室 厦门 361005
    b 厦门大学能源学院 厦门 361102

谢佶晟, 2021年于厦门大学化学系获学士学位, 研究方向为钠离子电池层状过渡金属氧化物正极材料的失效及改性机理研究.

肖竹梅, 2018年于南开大学化学系获学士学位, 现为厦门大学化学化工学院杨勇教授课题组硕士研究生. 研究方向为锂、钠离子电池中高比能正极材料的反应机理研究.

左文华, 2020年于厦门大学获得博士学位, 师从杨勇教授, 目前主要从事钠离子电池层状过渡金属氧化物正极材料研究.

杨勇, 厦门大学闽江计划特聘教授, 博士生导师, 国家杰出青年科学基金获得者. 1992年获厦门大学理学博士学位, 1997~1998年任英国牛津大学访问科学家. 主要研究方向为能源电化学、材料物理化学及表面物理化学.

收稿日期: 2021-06-09

  网络出版日期: 2021-07-20

基金资助

国家重点研发专项课题(2016YFB0901502); 厦门大学化学学科拔尖学生培养试验计划资助项目

Research Progresses of Sodium Cobalt Oxide as Cathode in Sodium Ion Batteries

  • Jisheng Xie ,
  • Zhumei Xiao ,
  • Wenhua Zuo ,
  • Yong Yang
Expand
  • a State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
    b School of Energy Research, Xiamen University, Xiamen 361102, China
* E-mail: ; Tel.: 0592-2185753

Received date: 2021-06-09

  Online published: 2021-07-20

Supported by

National Key Research and Development Program of China(2016YFB0901502); funding project of the Top-notch Students Scientific Development Pilot Program (Chemistry) of Xiamen University

摘要

钠离子电池凭借分布广泛和低成本的钠资源在大规模电化学能量存储领域受到广泛关注. 层状过渡金属氧化物作为一种重要的钠离子电池正极材料, 具有比容量高、电化学可逆性相对较好和化学组成丰富且可调的特征, 得到广泛关注. 其中钴酸钠是一种典型层状过渡金属氧化物, 自20世纪80年代就得到大量研究. 由于钴酸钠含有丰富的电化学信息, 基于其充放电过程进行的机理研究对理解钠离子电池层状氧化物体系具有重要意义. 因此在介绍钴酸钠的常见结构类型与合成相图的基础上, 本文着重综述了不同结构钴酸钠在充放电过程中结构变化和电荷补偿机理的研究进展, 同时讨论了上述机制对电化学性能的影响. 本综述旨在为深入研究并建立层状过渡金属氧化物正极材料电化学过程中的构效关系提供支持.

本文引用格式

谢佶晟 , 肖竹梅 , 左文华 , 杨勇 . 钠离子电池钴酸钠正极材料研究进展[J]. 化学学报, 2021 , 79(10) : 1232 -1243 . DOI: 10.6023/A21060260

Abstract

Sodium ion batteries have regained widespread attention in the field of large-scale electrochemical energy storage by virtue of their widely distributed and low-cost sodium resources. Among many of the cathode materials (layered, tunnel-like, polyanionic type and Prussian-blue type, etc.), layered transition metal oxide materials have received extensive research attention due to the features of high specific capacity, relatively good electrochemical reversibility, and rich and adjustable chemical composition. Sodium cobalt oxide is one of the most typical layered transition metal oxides. A lot of research has been done about sodium cobalt oxide since the 1980s. Although compared with other energy storage systems (such as lithium cobalt oxide materials which has the similar composition), sodium cobalt oxide does not take more advantage in electrochemical performance (like rate performance, cycle performance, etc.), but it can be observed from the charge and discharge curve that sodium cobalt oxide has undergone complex electrochemical processes, which means that it has a bunch of information on the degradation mechanisms during the charge and discharge processes. The correlation studies of the failure mechanism during the charging and discharging processes of sodium cobalt oxide (including the structure changes and the charge compensation mechanisms) are of great significance for the deep understanding of the layered oxide systems in sodium ion batteries. Therefore, on the basis of introducing the common crystal structure types and the synthesis phase diagram of sodium cobalt oxides, this article focuses on reviewing the structure changes (including phase transition and Na+/ vacancy ordering) and charge compensation mechanisms of sodium cobalt oxides with different crystal structures during the charging and discharging. At the same time, the correlation between the mechanisms above and electrochemical performance is discussed. This review aims to provide support for the in-depth study and establishment of the structure-activity relationship in the electrochemical processes of layered transition metal oxide cathode materials.

参考文献

[1]
Fang, Z.; Cao, Y.-L.; Hu, Y.-S.; Chen, L.-Q.; Huang, X.-J. Energy Storage Sci. Technol. 2016, 5, 149. (in Chinese)
[1]
(方铮, 曹余良, 胡勇胜, 陈立泉, 黄学杰, 储能科学与技术, 2016, 5, 149.)
[2]
Christoph, V.; Daniel, B.; Marcel, W.; Stefano, P. Nat. Rev. Mater. 2018, 3, 1.
[3]
Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sinica 2014, 72, 21. (in Chinese)
[3]
(李慧, 吴川, 吴锋, 白莹, 化学学报, 2014, 72, 21.)
[4]
Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Solid State Ionics 1981, 3-4, 171.
[5]
Kikkawa, S.; Miyazaki, S.; Koizumi, M. J. Solid State Chem. 1986, 62, 35.
[6]
Li, W.; Liu, X.; Celio, H.; Smith, P.; Dolocan, A.; Chi, M.; Manthiram, A. Adv. Energy Mater. 2018, 8, 1703154.
[7]
Noh, H.-J; Youn, S; Yoon, C. S; Sun, Y.-K. J. Power Sources 2013, 233, 121.
[8]
Rossouw, M. H.; Thackeray, M. M. Mater. Res. Bull. 1991, 26, 463.
[9]
Balsys, R. J.; Lindsay Davis, R. Solid State Ionics 1997, 93, 279.
[10]
Delmas, C.; Braconnier, J.; Fouassier, C.; Hagenmuller, P. Solid State Ionics 1981, 3-4, 165.
[11]
Molenda, J.; Delmas, C.; Hagenmuller, P. Solid State Ionics 1983, 9-10, 431.
[12]
Shacklette, L. W.; Jow, T. R.; Townsend, L. J. Electrochem. Soc. 1988, 135, 2669.
[13]
Shacklette, L. W.; Jow, T. R.; Maxfield, M.; Hatami, R. Synthetic Met. 1989, 28, 655.
[14]
Fouassier, C.; Matejka, G.; Reau, J.-M.; Hagenmuller, P. J. Solid State Chem. 1973, 6, 532.
[15]
Liu, L.-L.; Qi, X.-G.; Hu, Y.-S.; Chen, L.-Q.; Huang, X.-J. Acta Chim. Sinica 2017, 75, 218. (in Chinese)
[15]
(刘丽露, 戚兴国, 胡勇胜, 陈立泉, 黄学杰, 化学学报, 2017, 75, 218.)
[16]
Gutierrez, A.; Dose, W. M.; Borkiewicz, O.; Guo, F.; Avdeev, M.; Kim, S.; Fister, T. T.; Ren, Y.; Bareño, J.; Johnson, C. S. J. Phys. Chem. C 2018, 122, 23251.
[17]
Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A1225.
[18]
Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Shuji Hitomi; Ryoichi Okuyama; Ryo Usui; Yasuhiro Yamada; Shinichi Komaba. Nat. Mater. 2012, 11, 512.
[19]
Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. Energy Environ. Sci. 2014, 8, 195.
[20]
Kumakura, S.; Tahara, Y.; Sato, S.; Kubota, K.; Komaba, S. Chem. Mater. 2017, 29, 8958.
[21]
Didier, C.; Guignard, M.; Denage, C.; Szajwaj, O.; Ito, S.; Saadoune, I.; Darriet, J.; Delmas, C. Electrochem. Solid-State Lett. 2011, 14, A75.
[22]
Yu, C.-Y.; Park, J.-S.; Jung, H.-G.; Chung, K.-Y.; Aurbach, D.; Sun, Y.-K.; Myung, S.-T. Energy Environ. Sci. 2015, 8, 2019.
[23]
Caballero, A.; Hernán, L.; Morales, J.; Sánchez, L.; Santos Peña, J.; Aranda, M. A. G. J. Mater. Chem. 2002, 12, 1142.
[24]
Mendiboure, A.; Delmas, C.; Hagenmuller, P. J. Solid State Chem. France 1985, 57, 323.
[25]
Kikkawa, S.; Miyazaki, S.; Koizumi, M. Mater. Res. Bull. 1985, 20, 373.
[26]
Wang, L.; Wang, J.; Zhang, X.; Ren, Y.; Zuo, P.; Yin, G.; Wang, J. Nano Energy 2017, 34, 215.
[27]
Liu, X.; Zuo, W.; Zheng, B.; Xiang, Y.; Zhou, K.; Xiao, Z.; Shan, P.; Shi, J.; Li, Q.; Zhong, G.; Fu, R.; Yang, Y. Angew. Chem. Int. Ed. 2019, 58, 18086.
[28]
Zuo, W.; Qiu, J.; Liu, X.; Ren, F.; Liu, H.; He, H.; Luo, C.; Li, J.; Ortiz, G. F.; Duan, H.; Liu, J.; Wang, M.-S.; Li, Y.; Fu, R.; Yang, Y. Nat. Commun. 2020, 11, 3544.
[29]
Zuo, W.; Qiu, J.; Liu, X.; Zheng, B.; Zhao, Y.; Li, J.; He, H.; Zhou, K.; Xiao, Z.; Li, Q.; Ortiz, G. F.; Yang, Y. Energy Storage Mater. 2020, 26, 503.
[30]
Zuo, W.; Ren, F.; Li, Q.; Wu, X.; Fang, F.; Yu, X.; Li, H.; Yang, Y. Nano Energy 2020, 78, 105285.
[31]
Fang, Y.-J.; Chen, C.-X.; Ai, X.-P.; Yang, H.-X.; Cao, Y.-L. Acta Phys.-Chim. Sin. 2016, 33, 211. (in Chinese)
[31]
(方永进, 陈重学, 艾新平, 杨汉西, 曹余良, 物理化学学报, 2016, 33, 211.)
[32]
Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783.
[33]
Hertz, J. T.; Huang, Q.; McQueen, T.; Klimczuk, T.; Bos, J. W. G.; Viciu, L.; Cava, R. J. Phys. Rev. B 2008, 77, 75119.
[34]
Wang, Z.; Wang, Z.; Peng, W.; Guo, H.; Li, X.; Wang, J.; Qi, A. Ionics 2014, 20, 1525.
[35]
Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R. S. T. Nature 2003, 34, 53.
[36]
Berthelot, R.; Carlier, D.; Delmas, C. Nat. Mater. 2011, 10, 74.
[37]
Lei, Y.; Li, X.; Liu, L.; Ceder, G. Chem. Mater. 2014, 26, 5288.
[38]
Terasaki, I.; Sasago, Y.; Uchinokura, K. Phys. Rev. B 1997, 56, 75397.
[39]
Ding, J. J.; Zhou, Y. N.; Sun, Q.; Yu, X. Q.; Yang, X. Q.; Fu, Z. W. Electrochim. Acta 2013, 87, 388.
[40]
Guhl, C.; Rohrer, J.; Kehne, P.; Ferber, T.; Alff, L.; Albe, K.; Jaegermann, W.; Komissinskiy, P.; Hausbrand, R. Energy Storage Mater. 2021, 37, 190.
[41]
Delmas, C.; Fouassier, C.; Hagenmuller, P. Physica B+C 1980, 99, 81.
[42]
Blangero, M.; Carlier, D.; Pollet, M.; Darriet, J.; Delmas, C.; Doumerc, J.-P. Phys. Rev. B 2008, 77, 184116.
[43]
Han, S. C.; Lim, H.; Jeong, J.; Ahn, D.; Park, W. B.; Sohn, K.-S.; Pyo, M. J. Power Sources 2015, 277, 9.
[44]
Assadi, M. H. N.; Katayama-Yoshida, H. Comp. Mater. Sci. 2015, 109, 308.
[45]
Bianchini, M.; Wang, J.; Clément, R.; Ceder, G. Adv. Energy Mater. 2018, 8, 1801446.
[46]
Hasegawa, H.; Ishado, Y.; Okada, S.; Mizuhata, M.; Maki, H.; Matsui, M. J. Electrochem. Soc. 2021, 168, 10509.
[47]
Yoshida, H.; Yabuuchi, N.; Komaba, S. Electrochem. Commun. 2013, 34, 60.
[48]
Kang, S. M.; Park, J.-H.; Jin, A.; Jung, Y. H.; Mun, J.; Sung, Y.-E. ACS Appl. Mater. Interfaces 2018, 10, 3562.
[49]
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636.
[50]
Carlier, D.; van der Ven, A.; Delmas, C.; Ceder, G. Chem. Mater. 2003, 15, 2651.
[51]
Liu, Y.-C.; Chen, C.-J.; Zhang, N.; Xiang, X.-D.; Chen, J. J. Electrochem. 2016, 22, 437. (in Chinese)
[51]
(刘永畅, 陈程成, 张宁, 王刘彬, 向兴德, 陈军, 电化学, 2016, 22, 437.)
[52]
Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102.
[53]
Biecher, Y.; Smiley, D. L.; Guignard, M.; Fauth, F.; Berthelot, R.; Delmas, C.; Goward, G. R.; Carlier, D. Inorg. Chem. 2020, 59, 5339.
[54]
Liu, H.-Q.; Gao, X.; Chen, J.; Yin, S.-Y.; Zou, K.-Y.; Xu, L.-Q.; Zou, G.-Q.; Hou, H.-S.; Ji, X.-B. Energy Storage Sci. Technol. 2020, 9, 1327. (in Chinese)
[54]
(刘欢庆, 高旭, 陈军, 尹首懿, 邹康宇, 徐来强, 邹国强, 侯红帅, 纪效波, 储能科学与技术, 2020, 9, 1327.)
[55]
Zhu, X.-J.; Zhuang, Y.-H.; Zhao, Y.; Ni, M.-Z.; Xu, J.; Xia, H. Energy Storage Sci. Technol. 2020, 9, 1340. (in Chinese)
[55]
(朱晓辉, 庄宇航, 赵旸, 倪明珠, 徐璟, 夏晖, 储能科学与技术, 2020, 9, 1340.)
[56]
Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Adv. Energy Mater. 2018, 8, 1703415.
[57]
Yan, P.-F.; Zheng, J.-M.; Gu, M.; Xiao, J.; Zhang, J.-G.; Wang, C.-M. Nat. Commun. 2017, 8, 1.
[58]
Carlier, D.; Blangero, M.; Ménétrier, M.; Pollet, M.; Doumerc, J.-P.; Delmas, C. Inorg. Chem. 2009, 48, 7018.
[59]
Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kim, J. Ceram. Int. 2014, 40, 2411.
[60]
Shu, G. J.; Chou, F. C. Phys. Rev. B 2008, 78.
[61]
Shibata, T.; Kobayashi, W.; Moritomo, Y. Appl. Phys. Express 2015, 8, 29202.
[62]
Willis, T. J.; Porter, D. G.; Voneshen, D. J.; Uthayakumar, S.; Demmel, F.; Gutmann, M. J.; Roger, M.; Refson, K.; Goff, J. P. Sci. Rep. 2018, 8, 3210.
[63]
Hilgenkamp, H.; Ariando.; Smilde, H.-J. H.; Blank, D. H. A.; Rijnders, G.; Rogalla, H.; Kirtley, J. R.; Tsuei, C. C. Nature 2003, 422, 50.
[64]
Foo, M. L.; Wang, Y.; Watauchi, S.; Zandbergen, H. W.; He, T.; Cava, R. J.; Ong, N. P. Phys. Rev. Lett. 2004, 92, 247001.
[65]
Mukhamedshin, I. R.; Alloul, H.; Collin, G.; Blanchard, N. Phys. Rev. Lett. 2004, 93, 167601.
[66]
Mukhamedshin, I. R.; Dooglav, A. V.; Krivenko, S. A.; Alloul, H. Phys. Rev. B 2014, 90, 115151.
[67]
Platova, T. A.; Mukhamedshin, I. R.; Alloul, H.; Dooglav, A. V.; Collin, G. Phys. Rev. B 2009, 80, 224106.
[68]
Platova, T. A.; Mukhamedshin, I. R.; Dooglav, A. V.; Alloul, H. JETP Lett. 2010, 91, 421.
[69]
Mukhamedshin, I. R.; Alloul, H. Physica B: Condensed Matter 2015, 460, 58.
[70]
Zandbergen, H. W.; Foo, M.; Xu, Q.; Kumar, V.; Cava, R. J. Phys. Rev. B 2004, 70, 24101.
[71]
Chou, F. C.; Chu, M.-W.; Shu, G. J.; Huang, F.-T.; Pai, W. W.; Sheu, H. S.; Lee, P. A. Phys. Rev. Lett. 2008, 101, 127404.
[72]
Roger, M.; Morris, D. J. P.; Tennant, D. A.; Gutmann, M. J.; Goff, J. P.; Hoffmann, J.-U.; Feyerherm, R.; Dudzik, E.; Prabhakaran, D.; Boothroyd, A. T.; Shannon, N.; Lake, B.; Deen, P. P. Nature 2007, 445, 631.
[73]
Qu, J. F.; Wang, W.; Chen, Y.; Li, G.; Li, X. G. Phys. Rev. B 2006, 73, 250.
[74]
Chen, J. Acta Phys.-Chim. Sin. 2018, 35, 347. (in Chinese)
[74]
(陈军, 物理化学学报, 2018, 35, 347.)
[75]
de Groot, F. M. F.; Grioni, M.; Fuggle, J. C.; Ghijsen, J.; Sawatzky, G. A.; Petersen, H. Phys. Rev. B 1989, 40, 5715.
[76]
Valkeapaa, M.; Katsumata, Y.; Asako, I.; Motohashi, T.; Chan, T. S.; Liu, R. S.; Chen, J. M.; Yamauchi, H.; Karppinen, M. J. Solid State Chem. 2007, 180, 1608.
[77]
Wang, P.-F.; Yao, H.-R.; Liu, X.-Y.; Yin, Y.-X.; Zhang, J.-N.; Wen, Y.; Yu, X.; Gu, L.; Guo, Y.-G. Sci. Adv. 2018, 4, eaar6018.
文章导航

/