研究论文

B,N-SnO2/TiO2光催化剂的制备及其光催化性能研究

  • 马智烨 ,
  • 叶丽 ,
  • 吴雨桓 ,
  • 赵彤
展开
  • a 中国科学院化学研究所 极端环境高分子材料重点实验室 北京 100190
    b 中国科学院大学 化学科学学院 北京 100049

收稿日期: 2021-05-31

  网络出版日期: 2021-07-23

基金资助

项目受国家自然科学基金(21604090)

Preparation and Photocatalytic Performance of B,N-SnO2/TiO2 Photocatalyst

  • Zhiye Ma ,
  • Li Ye ,
  • Yuhuan Wu ,
  • Tong Zhao
Expand
  • a Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-05-31

  Online published: 2021-07-23

Supported by

National Natural Science Foundation of China(21604090)

摘要

为了提高TiO2在可见光下的光催化活性, 采用聚合物前驱体法制备了B,N共掺杂的SnO2/TiO2(B,N-SnO2/TiO2)粉体型光催化剂. 进一步为了提高光催化剂的实用性, 通过浸渍-裂解法制备了氧化铝纤维毡负载的B,N-SnO2/TiO2光催化剂. 利用X射线衍射仪、场发射扫描电子显微镜、场发射透射电子显微镜、X射线光电子能谱、比表面积分析仪、紫外-可见分光光度计等对其进行了表征. 以氧氟沙星水溶液为模拟污染物, 考察了B,N-SnO2/TiO2粉体型光催化剂和负载型光催化剂的可见光催化活性及稳定性. 结果表明, 该粉体型光催化剂在可见光下光照15 min, 对氧氟沙星的降解率可达98.3%. 负载型光催化剂也表现出了良好的光催化性能及可重复性和稳定性, 在21次重复使用后光催化性能几乎不发生变化.

本文引用格式

马智烨 , 叶丽 , 吴雨桓 , 赵彤 . B,N-SnO2/TiO2光催化剂的制备及其光催化性能研究[J]. 化学学报, 2021 , 79(9) : 1173 -1179 . DOI: 10.6023/A21050242

Abstract

In order to improve the photocatalytic activity of TiO2 under visible light, B,N-codoped SnO2/TiO2 (B,N-SnO2/TiO2) powder photocatalysts were prepared by polymer precursor method, and to further improve the practicability of B,N-SnO2/TiO2 photocatalyst, alumina fabrics immobilized B,N-SnO2/TiO2 catalyst was prepared by precursor impregnation and pyrolysis method. The typical experimental procedure for synthesis of B,N-SnO2/TiO2 powder photocatalysts is as follows: First, tetrapropylorthotitanate (TNPT) was mixed with PEG-600 and Sn(OPr)4 under magnetic stirring and refluxed for 2 h. Then boric acid was added. Acetamide and acetylacetone were added to the system after boric acid was dissolved completely. Finally, a mixture of deionized water and n-propanol were added dropwise. The whole solution were reflux for 1 h and then the B,N-SnO2/TiO2 precursor was obtained by rotary evaporation method. The precursor was placed in a quartz tube furnace and calcined at a heating rate of 3 ℃/min to 450 ℃ for 30 min to obtain B,N-SnO2/TiO2 powder type photocatalyst. Supported photocatalysts was prepared as follows: The precursor solution of B,N-SnO2/TiO2 was diluted with n-propanol and heated at 100 ℃ for 1 h. The alumina fabrics was immersed in the loaded solution and heated at 100 ℃ for 1 h. Then the precursor immersed fabrics was dried by rotary evaporation method. Supported photocatalysts were obtained by calcining the dried fabrics at 450 ℃ for 30 min in air atmosphere. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectra (UV-DRS). B,N-SnO2/TiO2 powder photocatalysts were predominantly homogeneous anatase phase. The introduction of boron inhibited the growth of anatase phase crystal, and the grain size was 15 nm, showing a stacking structure. The results of HRTEM and energy dispersive spectrometer (EDS) showed that SnO2 and TiO2 constructed heterostructure, and the doped elements existed and distributed evenly. Boron and nitrogen co-doping and heterojunction structure effectively improved the separation ability of photogenerated carriers. The photocatalytic activities of B,N-SnO2/TiO2 powder photocatalysts were investigated using ofloxacin solution as simulated pollutant. The results indicated that the degradation ratio of ofloxacin reached 98.3% in 15 min under visible light. The B,N-SnO2/TiO2-loaded Al2O3 fabrics also showed excellent photocatalytic performance, with a thickness of about 100 nm powder photocatalysts on the surface of Al2O3 fabrics, and the heterostructure still existed. The results showed that the degradation rate of ofloxacin was 68.7% under visible light irradiation for 120 min, and the photocatalytic performance was almost unchanged after repeated use for 21 times.

参考文献

[1]
Pelaez, M.; Nolan, N.-T.; Pillai, S.-C.; Seery, M.-K.; Falaras, P.; Kontos, A.-G.; Dunlop, P.-S.-M.; Hamilton, J.-W.-J.; Byrne, J.-A.; O'shea, K.; Entezari, M.-H.; Dionysiou, D.-D. Appl. Catal. B 2012, 125, 331.
[2]
Cai, Y.-Q.; Feng, Y.-P. Prog. Surf. Sci. 2016, 91, 183.
[3]
Zhang, J.-Y.; Xiao, G.-C.; Xiao, F.-X.; Liu, B. Mater. Chem. Front. 2017, 1, 231.
[4]
Li, H.-X.; Bian, Z.-F.; Zhu, J.; Zhang, D.-Q.; Li, G.-S.; Huo, Y.-N.; Li, H.; Lu, Y.-F. J. Am. Chem. Soc. 2007, 129, 8406.
[5]
Fang, Y.-F.; Huang, Y.-P.; Liu, L.-M.; Luo, G.-F. Acta Chim. Sinica 2007, 65, 2693. (in Chinese)
[5]
( 方艳芬, 黄应平, 刘立明, 罗光富, 化学学报, 2007, 65, 2693.)
[6]
Guo, Y.; Li, Y.-R.; Wang, C.-M.; Long, R.; Xiong, Y.-J. Acta Chim. Sinica 2019, 77, 520. (in Chinese)
[6]
( 郭宇, 李燕瑞, 王成名, 龙冉, 熊宇杰, 化学学报, 2019, 77, 520.)
[7]
Li, A.-C.; Li, J.-F.; Liu, Y.-L.; Zhang, J.-P.; Zhao, L.-P.; Lu, Y.-H. Acta Chim. Sinica 2013, 71, 815. (in Chinese)
[7]
( 李爱昌, 李健飞, 刘亚录, 张建平, 赵丽平, 卢艳红, 化学学报, 2013, 71, 815.)
[8]
Xu, C.-Y.; Lin, J.-Y.; Pan, F.-Q.; Deng, B.-W.; Wang, Z.-H.; Zhou, J.-H.; Chen, Y.; Ma, J.-C.; Gu, Z.-E.; Zhang, Y.-W. Acta Chim. Sinica 2017, 75, 699. (in Chinese)
[8]
( 许辰宇, 林伽毅, 潘富强, 邓博文, 王智化, 周俊虎, 陈云, 马京程, 顾志恩, 张彦威, 化学学报, 2017, 75, 699.)
[9]
Jiang, H.-Q.; Wang, Q.-F.; Li, J.-S.; Wang, Q.-Y.; Li, Z.-Y. Acta Chim. Sinica 2012, 70, 2173. (in Chinese)
[9]
( 姜洪泉, 王巧凤, 李井申, 王庆元, 李振宇, 化学学报, 2012, 70, 2173.)
[10]
Cheng, Y.-Z.; Zhang, Y.-M.; Tang, Y. Chinese J. Catal. 2001, 22, 203. (in Chinese)
[10]
( 成英之, 张渊明, 唐渝, 催化学报, 2001, 22, 203.)
[11]
Tada, H.; Hattori, A.; Tokihisa, Y.; Imai, K.; Tohge, N.; Ito, S. J. Phys. Chem. B 2000, 104, 4585.
[12]
Tada, H.; Konishi, Y.; Kokubu, A.; Ito, S. Langmuir 2004, 20, 3816.
[13]
Guo, W.-X.; Zhang, F.; Lin, C.-J.; Wang, Z.-L. Adv. Mater. 2012, 24, 4761.
[14]
Svagelj, Z.; Mandic, V.; Curkovic, L.; Biosic, M.; Zmak, I.; Gaborardi, M. Materials 2020, 13, 227.
[15]
Vargova, M.; Plesch, G.; Vogt, U. F.; Zahoran, M.; Gorbar, M.; Jesenak, K. Appl. Surf. Sci. 2011, 257, 4678.
[16]
In, S.; Orlov, A.; Berg, R.; Garcta, F.; Pedrosa-Jimenez, S.; Tikhov, M.; Wright, D.; Lambert, R. J. Am. Chem. Soc. 2007, 129, 13790.
[17]
Patel, N.; Jaiswal, R.; Warang, T.; Scarduelli, G.; Dashora, A.; Ahuja, B.; Kothari, D.; Miotello, A. Appl. Catal. B-Environ. 2014, 150-151, 74.
[18]
Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483.
[19]
Zhao, W.; Ma, W.-H.; Chen, C.-C.; Zhao, J.-C.; Shuai, Z.-G. J. Am. Chem. Soc. 2004, 126, 4782.
[20]
Zhou, W.-J.; Du, G.-J.; Hu, P.-G.; Li, G.-H.; Wang, D.-Z.; Liu, H.; Wanf, J.-Y.; Boughton, R.; Liu, D.; Jiang, H.-D. J. Mater. Chem. A 2011, 21, 7937.
[21]
Mu, J.-B.; Chen, B.; Zhang, M. Y.; Guo, Z.-C.; Zhang, P.; Zhang, Z.-Y.; Sun, Y.-Y.; Shao, C.-L.; Liu, Y.-C. ACS Appl. Mater. Inter. 2012, 4, 424.
[22]
Xu, M.-X.; Wang, Y.-H.; Geng, J.-F.; Jing, D.-W. Chem. Eng. J. 2017, 307, 181.
[23]
Toloman, D.; Pana, O.; Stefan, M.; Popa, A.; Leostean, C.; Macavei, S.; Silipas, D.; Perhaita, I.; Lazar, M.-D.; Barbu-Tudoran, L. J. Colloid Interface Sci. 2019, 542, 296.
[24]
Wang, F.-L.; Feng, Y.-P.; Chen, P.; Wang, Y.-F.; Su, Y.-H.; Zhang, Q.-X.; Zeng, Y.-Q.; Xie, Z.-J.; Liu, H.-J.; Liu, Y.; Lv, W.-Y.; Liu, G.-G. Appl. Catal. B 2018, 227, 114.
[25]
Yu, S.-L.; Wu, X.-Q.; Wang, Y.-P.; Guo, X.; Tong, L.-M. Adv. Mater. 2017, 29, 1606128.
[26]
Xing, M.-Y.; Li, W.-K.; Wu, Y.-M.; Zhang, J.-L.; Gong, X.-Q. J. Phys. Chem. C 2011, 115, 7858.
[27]
Wei, Z.; Liu, Y.-f.; Wang, J.; Zong, R.-L.; Yao, W.-Q.; Wang, J.; Zhu, Y.-F. Nanoscale 2015, 76, 13943.
[28]
Lee, H.; Choi, W.-Y. Environ. Sci. Technol. 2002, 36, 3872.
[29]
Liu, W.; Wang, M.-L.; Xu, C.-X.; Chen, S.-F.; Fu, X.-L. J. Mol. Catal. A-Chem. 2013, 368-369, 9.
文章导航

/