定向Monte Carlo格点搜索算法用于氧化铝团簇(Al2O3)n (n=1~50)的结构搜索
Directional Monte Carlo Lattice Search Algorithm for the Structure Search of Alumina Clusters (Al2O3)n (n=1~50)
Received date: 2021-05-12
Online published: 2021-08-02
Supported by
National Natural Science Foundation of China(21873001)
氧化铝纳米团簇在众多技术应用中日益受到重视, 找到其最优结构对进一步的研究非常重要. 本工作提出了一种定向Monte Carlo格点搜索算法用于搜索不同氧化铝晶体(α, θ和δ)内的不同尺寸的氧化铝纳米团簇的结构, 并对结构进行了分析比较. 通过定向移动策略, 定向Monte Carlo格点搜索中每一步都是“有效”移动, 极大地增加了搜索效率. 研究结果发现α氧化铝团簇形成一种多层结构, θ和δ氧化铝团簇形成一种单层薄膜结构. θ和δ氧化铝团簇的二阶能量差分存在奇偶震荡, 偶数尺寸的氧化铝团簇具有相对更高的稳定性. 通过相对能量比较发现相同尺寸下θ和δ氧化铝团簇薄膜结构比α氧化铝团簇结构更稳定, 在对这种薄膜进行第一性原理计算后进一步验证这种薄膜具有良好的稳定性和抗氧化性.
关键词: 氧化铝团簇; 定向Monte Carlo; 结构搜索; 稳定性; 单层薄膜结构
孙稷 , 易玖琦 , 程龙玖 . 定向Monte Carlo格点搜索算法用于氧化铝团簇(Al2O3)n (n=1~50)的结构搜索[J]. 化学学报, 2021 , 79(9) : 1154 -1163 . DOI: 10.6023/A21050207
Alumina nanoclusters have attracted increasing attention in many technical applications due to their excellent properties in optics, electricity, thermodynamics, chemical reactions and other aspects. Therefore, it is very important to find the optimal structure for further research. In this paper, we use the directional Monte Carlo lattice search algorithm combined with Woodley's potential function to investigate the stable structures of different sizes of alumina nanoclusters in different crystal forms (α, θ and δ). In our algorithm, the lattice was chosen from supercells which the primitive lattice cell from the inorganic crystal structure database (ICSD) was duplicated to generate large supercells of α, θ and δ phases. The initial random structure generated in the lattice, then the selective probability for all chosen and empty atoms is calculated based on the Boltzmann distribution of energy. In the directional Monte Carlo exchange, at elevated temperatures, the system has enough energy to cross energy barriers and find the basins, and at low temperatures, it converges to around the global minimum. After structure searching, we analyze and compare the stable structures of different crystal forms. The results show that the α-alumina clusters consist of multiple (Al2O3)1 and form a multilayer structure, as the size increased, hexagonal aluminum began to form inside the cluster. The θ and δ alumina clusters form a stable monolayer thin film structure, with the increase of size, the monolayer film structure can still be maintained. To further study the relative stability of the cluster structure, we introduced a second-order energy difference. The second-order energy difference of θ and δ alumina clusters has obvious odd-even oscillation, and the even size alumina clusters have relatively higher stability due to better symmetry. α-Alumina is the most stable crystalline phase in the bulk phase, so we take the α-alumina clusters as the benchmark to compare the relative energy of alumina clusters with different crystal types. Through the comparison of relative energy, we found that the thin film structure of θ and δ alumina clusters under the same size is more stable than that of the α-alumina clusters. Therefore, we further carried out first-principles calculations on this film structure, and we found that this film structure has good kinetic and thermodynamic stability and good oxidation resistance.
[1] | Brey, W. S.; Krieger, K. A. J. Am. Chem. Soc. 1949, 71, 3637. |
[2] | Ernst, M.; Lurot, F.; Schrotter, J.-C. Appl. Catal. B-Environ. 2004, 47, 15. |
[3] | Qin, Y. Acta Phys.-Chim. Sin. 2019, 35, 1305. (in Chinese) |
[3] | ( 覃勇, 物理化学学报, 2019, 35, 1305.) |
[4] | Lukin, E. S.; Tarasova, S. V.; Korolev, A. V. Glass Ceram. 2001, 58, 105. |
[5] | Schembri, V.; Heijmen, B. J. M. Med. Phys. 2007, 34, 2113. |
[6] | Martínez, A.; Sansores, L. E.; Salcedo, R.; Tenorio, F. J.; Ortiz, J. V. J. Phys. Chem. A 2002, 106, 10630. |
[7] | Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J. Nature 1982, 298, 830. |
[8] | Magg, N.; Giorgi, J. B.; Schroeder, T.; Bäumer, M.; Freund, H.-J. J. Phys. Chem. B 2002, 106, 8756. |
[9] | Silva, F. T.; Silva, M. X.; Belchior, J. C. Front. Chem. 2019, 7, 707. |
[10] | Jäger, M.; Schäfer, R.; Johnston, R. L. Nanoscale 2019, 11, 9042. |
[11] | Yañez, O.; Báez-Grez, R.; Inostroza, D.; Rabanal-León, W. A.; Pino-Rios, R.; Garza, J.; Tiznado, W. J. Chem. Theory Comput. 2019, 15, 1463. |
[12] | Zhou, L.-Q.; Yan, Z.-H.; Yue, Z.-Y.; Liang, X.-Q.; Zhao, J.-J. J. At. Mol. Phys. 2017, 34, 441. (in Chinese) |
[12] | ( 周丽琴, 闫兆鸿, 岳子渝, 梁晓庆, 赵纪军, 原子与分子物理学报, 2017, 34, 441.) |
[13] | Zhao, J.; Shi, R.; Sai, L.; Huang, X.; Su, Y. Mol. Simulat. 2016, 42, 809. |
[14] | Zhou, Y.; Zhao, Z.; Cheng, D. Comput. Phys. Commun. 2020, 247, 106945. |
[15] | Mai, G.; Hong, Y.; Fu, S.; Lin, Y.; Hao, Z.; Huang, H.; Zhu, Y. Swarm Evol. Comput. 2020, 57, 100710. |
[16] | Li, M.-S.; Huang, X.-Y.; Liu, H.-S.; Liu, B.-X.; Wu, Y.; Ai, F.-R. Acta Chim. Sinica 2013, 71, 1053. (in Chinese) |
[16] | ( 李孟山, 黄兴元, 柳和生, 柳炳祥, 武燕, 艾凡荣, 化学学报, 2013, 71, 1053.) |
[17] | Liu, T.-D.; Chen, J.-R.; Hong, W.-P.; Shao, G.-F.; Wang, T. N.; Zheng, J.-W.; Wen, Y.-H. Acta Phys. Sin. 2013, 62, 192. (in Chinese) |
[17] | ( 刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华, 物理学报, 2013, 62, 192.) |
[18] | Wang, Y.-C.; Lv, J.; Ma, Y.-M. Chin. Sci. Bull. 2015, 60, 2580. (in Chinese) |
[18] | ( 王彦超, 吕健, 马琰铭, 科学通报, 2015, 60, 2580.) |
[19] | Gao, P.-Y.; Lv, J.; Wang, Y.-C.; Ma, Y.-M. Physics 2017, 46, 582. (in Chinese) |
[19] | ( 高朋越, 吕健, 王彦超, 马琰铭, 物理, 2017, 46, 582.) |
[20] | Zhang, J.; Dolg, M. Phys. Chem. Chem. Phys. 2015, 17, 24173. |
[21] | Zhang, J.; Dolg, M. Phys. Chem. Chem. Phys. 2016, 18, 3003. |
[22] | Zhang, J.; Glezakou, V.-A.; Rousseau, R.; Nguyen, M.-T. J. Chem. Theory Comput. 2020, 16, 3947. |
[23] | Wang, Q.-W.; Li, X.-Q.; Chen, H.-J.; Zhang, J.-W. 2017, 34, 1040. (in Chinese) |
[23] | ( 王全武, 李喜全, 陈恒杰, 张家伟, 原子与分子物理学报, 2017, 34, 1040.) |
[24] | Shao, X.; Cheng, L.; Cai, W. J. Comput. Chem. 2004, 25, 1693. |
[25] | Shao, X.; Yang, X.; Cai, W. J. Comput. Chem. 2008, 29, 1772. |
[26] | Wu, X.; He, C. Chem. Phys. 2012, 405, 100. |
[27] | Wu, X.; Cheng, W. J. Chem. Phys. 2014, 141, 124110. |
[28] | Wei, D.; Ma, W.; Wu, X.; Cheng, L. Chem. Phys. 2021, 543, 111097. |
[29] | Siddique, N.; Adeli, H. Int. J. Artif. Intell. Tools 2016, 25, 1630001. |
[30] | Karabin, M.; Stuart, S. J. J. Chem. Phys. 2020, 153, 114103. |
[31] | Rondina, G. G.; Da Silva, J. L. F. J. Chem Inf. Model. 2013, 53, 2282. |
[32] | Huang, R.; Bi, J.-X.; Li, L.; Wen, Y.-H. J. Chem Inf. Model. 2020, 60, 2219. |
[33] | Liu, T.-D.; Li, Z.-P.; Ji, Q.-S.; Shao, G.-F.; Fan, T.-E.; Wen, Y.-H. Acta Phys. Sin. 2017, 66, 57. (in Chinese) |
[33] | ( 刘暾东, 李泽鹏, 季清爽, 邵桂芳, 范天娥, 文玉华, 物理学报, 2017, 66, 57.) |
[34] | Northby, J. A. J. Chem. Phys. 1987, 87, 6166. |
[35] | Rahm, J. M.; Erhart, P. Nano Lett. 2017, 17, 5775. |
[36] | He, C.-C.; Liao, J.-H.; Yang, X.-B. Acta Phys. Sin. 2017, 66, 85. (in Chinese) |
[36] | ( 何长春, 廖继海, 杨小宝, 物理学报, 2017, 66, 85.) |
[37] | Gutiérrez, G.; Johansson, B. Phys. Rev. B 2002, 65, 104202. |
[38] | Woodley, S. M. Proc. R. Soc. A 2011, 467, 2020. |
[39] | Bush, T. S.; Gale, J. D.; Catlow, C. R. A.; Battle, P. D. J. Mater. Chem. 1994, 4, 831. |
[40] | Romero, D.; Barrón, C.; Gómez, S. Comput. Phys. Commun. 1999, 123, 87. |
[41] | Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272. |
[42] | Lewis, J.; Schwarzenbach, D.; Flack, H. D. Acta Crystallogr. Sect. A 1982, 38, 733. |
[43] | Zhou, R.-S.; Snyder, R. L. Acta Crystallogr. Sect. B 1991, 47, 617. |
[44] | Repelin, Y.; Husson, E. Mater. Res. Bull. 1990, 25, 611. |
[45] | Yu, K.; Wang, X.; Chen, L.; Wang, L. J. Chem. Phys. 2019, 151, 214105. |
[46] | Paleico, M. L.; Behler, J. J. Chem. Phys. 2020, 152, 094109. |
[47] | Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. |
[48] | Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. |
[49] | Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. |
[50] | Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. |
[51] | Togo, A.; Tanaka, I. Scr. Mater. 2015, 108, 1. |
[52] | Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. |
[53] | Laurens, G.; Amans, D.; Lam, J.; Allouche, A.-R. Phys. Rev. B 2020, 101, 045427. |
[54] | Van den Bossche, M.; Noguera, C.; Goniakowski, J. Nanoscale 2020, 12, 6153. |
[55] | McHale, J. M.; Auroux, A.; Perrotta, A. J.; Navrotsky, A. Science 1997, 277, 788. |
/
〈 |
|
〉 |