基于石墨烯独特生物界面效应的功能化载体研究进展
收稿日期: 2021-06-03
网络出版日期: 2021-08-09
基金资助
北京市自然科学基金面上项目(2202056); 国家自然科学基金重点项目(32030062)
Advances in Functionalized Carriers Based on Graphene's Unique Biological Interface Effect
Received date: 2021-06-03
Online published: 2021-08-09
Supported by
Beijing Municipal Natural Science Foundation(2202056); Key Program of National Natural Science Foundation of China(32030062)
二维石墨烯及其衍生物与生物界面的相互作用, 展现出相比于传统维度粒子截然不同的特性, 为功能化医药载体的设计开发提供了潜力策略. 除了优异的电学、热学、光学等性能外, 石墨烯的独特的二维性质, 可以引起细胞更强的应激反应, 包括与细胞膜发生水平摩擦/竖直嵌入/三明治超级结构、选择性被细胞内吞、胞内限域折叠、引发细胞自噬以及隐形活化效应. 基于上述独特界面效应以及理论模拟机制, 对石墨烯进行合理设计, 可在保障安全性的前提下, 满足药物递送、疫苗佐剂、成像传感、光热治疗等需求. 本综述结合课题组近10年在(氧化)石墨烯与生物界面效应、微观作用机理及应用开发方面的系统研究工作, 同时涵盖了国际最新进展, 以期为石墨烯高效、安全体系的设计、构建和应用, 提供理论依据和前瞻性预测.
岳华 , 马光辉 . 基于石墨烯独特生物界面效应的功能化载体研究进展[J]. 化学学报, 2021 , 79(10) : 1244 -1256 . DOI: 10.6023/A21050238
The interaction of two-dimensional graphene and its derivatives with biological interfaces exhibits distinct properties and advantages over traditional dimensional particles, offering potential strategies for the design and development of functionalized pharmaceutical carriers. Apart from the excellent electrical, thermal and optical properties, the two-dimensional structure endows the graphene stronger interactions with cell membranes and then induces obvious cellular response. These responses include the horizontal friction/slant insertion or sandwiched superstructure, selective internalization by phagocytes, folding effect upon the limited intracellular space, autophagy phenomenon and invisible activation. Based on these unique interfacial effects and theoretical simulation mechanisms, rational designs will meet the needs of drug delivery, vaccine carriers, imaging and sensing, and photothermal therapy as well as good biosafety. This review concludes our researches of exploring the biological interface effects, dynamic molecular mechanism, and applications regarding graphene (oxide) in the past 10 years. Meanwhile, it also covers the latest international progress, in order to provide theoretical basis and prospective prediction for the design, construction, and application of efficient and safe graphene systems.
Key words: graphene; biological interface effect; 2D carrier; drug delivery; vaccine adjuvant
[1] | Geim, A. K. Science 2009, 324, 1530. |
[2] | Janegitz, B. C.; Silva, T. A.; Wong, A.; Ribovski, L.; Vicentini, F. C.; Sotomayor, M. D. T.; Fatibello, O. Biosens. Bioelectron. 2017, 89, 224. |
[3] | Kuok, F. H.; Liao, C. Y.; Wan, T. H.; Yeh, P. W.; Cheng, I. C.; Chen, J. Z. J. Alloys Compd. 2017, 692, 558. |
[4] | Sun, C. B.; Liu, Y. Q.; Sheng, J. Z.; Huang, Q. K.; Lv, W.; Zhou, G. M.; Cheng, H. M. Mater. Horiz. 2020, 7, 2487. |
[5] | Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523. |
[6] | Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S.; Chen, M. W.; Fujita, T.; Eda, G.; Yamaguchi, H.; Chhowalla, M.; Chen, C. W. Angew. Chem. Int. Ed. 2012, 51, 6662. |
[7] | Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Adv. Mater. 2016, 28, 6052. |
[8] | Qian, J.; Wang, D.; Cai, F. H.; Xi, W.; Peng, L.; Zhu, Z. F.; He, H.; Hu, M. L.; He, S. L. Angew. Chem. Int. Ed. 2012, 51, 10570. |
[9] | Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 6825. |
[10] | Chen, D.; Feng, H. B.; Li, J. H. Chem. Rev. 2012, 112, 6027. |
[11] | Zhao, K. L.; Hao, Y. G.; Zhu, M.; Cheng, G. S. Acta Chim. Sinica 2018, 76, 168. (in Chinese) |
[11] | (赵克丽, 郝莹, 朱墨, 程国胜, 化学学报, 2018, 76, 168.) |
[12] | Bullock, C. J.; Bussy, C. Adv. Mater. Interf. 2019, 6, 1900229. |
[13] | Daneshmandi, L.; Barajaa, M.; Rad, A. T.; Sydlik, S. A.; Laurencin, C. T. Adv. Healthc. Mater. 2020, 2001414. |
[14] | Yue, H.; Wei, W.; Yue, Z.; Wang, B.; Luo, N.; Gao, Y.; Ma, D.; Ma, G.; Su, Z. Biomaterials 2012, 33, 4013. |
[15] | Zhang, W. D.; Yan, L.; Li, M.; Zhao, R. S.; Yang, X.; Ji, T. J.; Gu, Z. J.; Yin, J. J.; Gao, X. F.; Nie, G. J. Toxicol. Lett. 2015, 237, 61. |
[16] | Liao, K. H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. ACS Appl. Mater. Inter. 2011, 3, 2607. |
[17] | Liu, J.; Zhang, D. D.; Lian, S.; Zheng, J. X.; Li, B. F.; Li, T.; Jia, L. Int. J. Nanomed. 2018, 13, 7457. |
[18] | Hu, W. B.; Peng, C.; Lv, M.; Li, X. M.; Zhang, Y. J.; Chen, N.; Fan, C. H.; Huang, Q. ACS Nano 2011, 5, 3693. |
[19] | Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. Biomaterials 2012, 33, 2206. |
[20] | Ding, Z.; Luo, N.; Yue, H.; Gao, Y.; Ma, G.; Wei, W. J. Mater. Chem. B 2020, 8, 6845. |
[21] | Yue, H.; Ma, G. H. Acta Polym. Sin. 2020, 51, 125. (in Chinese) |
[21] | (岳华, 马光辉, 高分子学报, 2020, 51, 125.) |
[22] | Ma, G. H.; Yue, H. Chin. J. Chem. 2020, 38, 911. |
[23] | Yue, H.; Wei, W.; Yue, Z.; Lv, P.; Wang, L.; Ma, G.; Su, Z. Eur. J. Pharm. Sci. 2010, 41, 650. |
[24] | Chen, P.; Yue, H.; Zhai, X.; Huang, Z.; Ma, G. H.; Wei, W.; Yan, L. T. Sci. Adv. 2019, 5, eaaw3192. |
[25] | Chen, G. Y.; Yang, H. J.; Lu, C. H.; Chao, Y. C.; Hwang, S. M.; Chen, C. L.; Lo, K. W.; Sung, L. Y.; Luo, W. Y.; Tuan, H. Y.; Hu, Y. C. Biomaterials 2012, 33, 6559. |
[26] | Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. ACS Nano 2015, 9, 10498. |
[27] | Wu, S. Y.; An, S. S. A.; Hulme, J. Int. J. Nanomed. 2015, 10, 9. |
[28] | Hao, B. J.; Song, T.; Huang, X. Y.; Ye, M.; Qian, W. H. Chin. J. Org. Chem. 2020, 40, 3279. (in Chinese) |
[28] | (郝冰洁, 宋涛, 黄晓宇, 叶茂, 钱文昊, 有机化学, 2020, 40, 3279.) |
[29] | Ma, M. H.; Xu, M.; Liu, S. J. Acta Chim. Sinica 2020, 78, 877. (in Chinese) |
[29] | (马明昊, 徐明, 刘思金, 化学学报, 2020, 78, 877.) |
[30] | Luo, N.; Ni, D.; Yue, H.; Wei, W.; Ma, G. ACS Appl. Mater. Inter. 2015, 7, 5239. |
[31] | Luo, N.; Weber, J. K.; Wang, S.; Luan, B.; Yue, H.; Xi, X.; Du, J.; Yang, Z.; Wei, W.; Zhou, R.; Ma, G. Nat. Commun. 2017, 8, 14537. |
[32] | Ding, Z. W. Ph.D. Dissertation, University of Chinese Academy of Sciences, Beijing, 2020. (in Chinese) |
[32] | (丁昭文, 博士论文, 中国科学院大学, 北京, 2020.) |
[33] | Sun, X. T.; Feng, Z. W.; Hou, T. J.; Li, Y. Y. ACS Appl. Mater. Inter. 2014, 6, 7153. |
[34] | Zuo, G.; Zhou, X.; Huang, Q.; Fang, H. P.; Zhou, R. H. J. Phys. Chem. C 2011, 115, 23323. |
[35] | Yue, H.; Wei, W.; Gu, Z.; Ni, D.; Luo, N.; Yang, Z.; Zhao, L.; Garate, J. A.; Zhou, R.; Su, Z.; Ma, G. Nanoscale 2015, 7, 19949. |
[36] | Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P.; Zhou, R. H. Nat. Nanotech. 2013, 8, 594. |
[37] | Duan, G. X.; Kang, S. G.; Tian, X.; Garate, J. A.; Zhao, L.; Ge, C. C.; Zhou, R. H. Nanoscale 2015, 7, 15214. |
[38] | Zhang, X.; Ding, Z.; Ma, G.; Wei, W. Adv. Sci. 2021, 8, 2004506. |
[39] | Chen, S. H.; Perez-Aguilar, J. M.; Zhou, R. H. Nanoscale 2020, 12, 7939. |
[40] | Mao, J.; Guo, R.; Yan, L. T. Biomaterials 2014, 35, 6069. |
[41] | Yan, L. T.; Yu, X. Nanoscale 2011, 3, 3812. |
[42] | Shen, H.; Zhang, L. M.; Liu, M.; Zhang, Z. J. Theranostics 2012, 2, 283. |
[43] | Feng, L. Z.; Liu, Z. A. Nanomedicine 2011, 6, 317. |
[44] | Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B. RSC Adv. 2015, 5, 10782. |
[45] | Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Nat. Commun. 2018, 9, 1410 |
[46] | Kim, H.; Namgung, R.; Singha, K.; Oh, I. K.; Kim, W. J. Bioconjug. Chem. 2011, 22, 2558. |
[47] | Cao, W.; He, L.; Cao, W.; Huang, X.; Jia, K.; Dai, J. Acta Biomater. 2020, 112, 14. |
[48] | Sinha, A.; Cha, B. G.; Choi, Y. J.; Nguyen, T. L.; Yoo, P. J.; Jeong, J. H.; Kim, J. Chem. Mater. 2017, 29, 6883. |
[49] | Cao, Y. H.; Ma, Y. F.; Zhang, M. X.; Wang, H. M.; Tu, X. L.; Shen, H.; Dai, J. W.; Guo, H. C.; Zhang, Z. J. Adv. Funct. Mater. 2014, 24, 6963. |
[50] | Meng, C.; Zhi, X.; Li, C.; Li, C.; Chen, Z.; Qiu, X.; Ding, C.; Ma, L.; Lu, H.; Chen, D.; Liu, G.; Cui, D. ACS Nano 2016, 10, 2203. |
[51] | Xu, L. G.; Xiang, J.; Liu, Y.; Xu, J.; Luo, Y. C.; Feng, L. Z.; Liu, Z.; Peng, R. Nanoscale 2016, 8, 3785. |
[52] | Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H. N.; Wei, H. T.; Zhang, H.; Sun, H. C.; Yang, B. Chem. Commun. 2011, 47, 6858. |
[53] | Wan, J. X.; Chen, X. Y.; Wang, C.; Fang, X. H. J. Func. Mater. 2017, 48, 8024. (in Chinese) |
[53] | (万吉祥, 陈小源, 王聪, 方小红, 2017, 48, 8024.) |
[54] | Wu, X.; Tian, F.; Wang, W. X.; Chen, J.; Wu, M.; Zhao, J. X. J. Mater. Chem. C 2013, 1, 4676. |
[55] | Liu, Z.; Guo, Z.; Zhong, H.; Qin, X.; Wan, M.; Yang, B. Phys. Chem. Chem. Phys. 2013, 15, 2961. |
[56] | Wang, Y. B.; Kurunthu, D.; Scott, G. W.; Bardeen, C. J. J. Phys. Chem. C 2010, 114, 4153. |
[57] | Xie, L. M.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. F. J. Am. Chem. Soc. 2009, 131, 9890. |
[58] | Yue, Z.; Lv, P.; Yue, H.; Gao, Y.; Ma, D.; Wei, W.; Ma, G. Chem. Commun. 2013, 49, 3902. |
[59] | Zhao, H.; Ding, R. H.; Zhao, X.; Li, Y. W.; Qu, L. L.; Pei, H.; Yildirimer, L.; Wu, Z. W.; Zhang, W. X. Drug Disc. Today 2017, 22, 1302. |
[60] | Mei, Q. S.; Zhang, Z. P. Angew. Chem. Int. Ed. 2012, 51, 5602. |
[61] | More, M. P.; Deshmukh, P. K. Nanotechnology 2020, 31, 432001. |
[62] | Kempaiah, R.; Chung, A.; Maheshwari, V. ACS Nano 2011, 5, 6025. |
[63] | Jiang, W. J.; Mo, F.; Jin, X.; Chen, L.; Xu, L. J.; Guo, L. Q.; Fu, F. F. Adv. Mater. Interf. 2017, 4, 1700425. |
[64] | Hou, L.; Yan, Y. S.; Tian, C. Y.; Huang, Q. X.; Fu, X. J.; Zhang, Z.; Zhang, H. L.; Zhang, H. J.; Zhang, Z. Z. J. Control. Release 2020, 319, 438. |
[65] | Shi, X.; Gong, H.; Li, Y.; Wang, C.; Cheng, L.; Liu, Z. Biomaterials 2013, 34, 4786. |
[66] | Ding, H.; Zhang, F.; Zhao, C. C.; Lv, Y. L.; Ma, G. H.; Wei, W.; Tian, Z. Y. ACS Appl. Mater. Inter. 2017, 9, 27396. |
/
〈 |
|
〉 |