研究论文

理论研究“受阻路易斯酸碱对”催化的烯醇硅醚氢化反应机理

  • 王英辉 ,
  • 魏思敏 ,
  • 段金伟 ,
  • 王康
展开
  • a 长安大学 理学院 西安 710064
    b 陕西中医药大学 陕西中药资源产业化省部共建协同创新中心 咸阳 712083

收稿日期: 2021-05-28

  网络出版日期: 2021-08-10

基金资助

项目受国家自然科学基金(21705029); 项目受国家自然科学基金(21804066); 陕西省高校科协青年人才托举计划(20190307); 陕西省自然科学基金(2021JQ-221); 长安大学中央高校基本科研业务费专项资金(300102120303); 陕西省教育厅自然科学研究项目(19JK0233)

Mechanism of Silyl Enol Ethers Hydrogenation Catalysed by Frustrated Lewis Pairs: A Theoretical Study

  • Yinghui Wang ,
  • Simin Wei ,
  • Jinwei Duan ,
  • Kang Wang
Expand
  • a College of Science, Chang'an University, Xi'an 710064, China
    b Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China

Received date: 2021-05-28

  Online published: 2021-08-10

Supported by

National Natural Science Foundation of China(21705029); National Natural Science Foundation of China(21804066); Young Talent Fund of University Association for Science and Technology in Shaanxi, China(20190307); Natural Science Foundation of Shaanxi Province(2021JQ-221); Fundamental Research Funds for the Central Universities, CHD(300102120303); Special Scientific Research Plan of Education Department of Shaanxi Province(19JK0233)

摘要

“受阻路易斯酸碱对”(FLPs)催化的烯醇硅醚氢化反应是一类重要的直接合成醇类化合物的方法, 然而目前其反应机理仍不明确. 基于此, 以乙基取代的全氟苯基硼作为路易斯酸(Et-B(C6F5)2), 三叔丁基膦(t-Bu3P)作为路易斯碱, 烯醇硅醚化的苯乙酮(Me-TMS)作为底物建立了模型反应, 并使用密度泛函理论系统研究了其催化氢化反应机理. 结果显示: FLPs催化的烯醇硅醚氢化反应从Et-B(C6F5)2t-Bu3P形成B-P-FLPs开始, 随后会依次经过H2裂解, H+和H-转移等过程, 其中H+转移为决速步, H-转移无势垒, B-P-FLPs生成及H+转移是吸热反应. 升高温度不利于氢化反应发生, 但是增大压力可促进反应进行. 底物取代基效应会影响H-转移过程, 可能使反应不发生.

本文引用格式

王英辉 , 魏思敏 , 段金伟 , 王康 . 理论研究“受阻路易斯酸碱对”催化的烯醇硅醚氢化反应机理[J]. 化学学报, 2021 , 79(9) : 1164 -1172 . DOI: 10.6023/A21050236

Abstract

Silyl enol ethers have attracted enormous attention as they could serve as a test bed for the development of novel frustrated Lewis pairs (FLPs) catalytic systems. However, the reaction mechanism of hydrogenation catalysed by metal-free FLPs for these compounds to the corresponding secondary alcohols remains elusive to a large extent in previous studies. We thus performed a thorough investigation on the reaction mechanism by density functional theory (DFT). To illustrate the reaction mechanism of FLPs-catalysed hydrogenation for silyl enol ethers, trimethyl((1-phenylvinyl)oxy)silane (Me-TMS) was chosen as the prototype substrate and toluene as the solvent, where the FLPs were generated by ethylbis(perfluorophenyl)- borane (Et-B(C6F5)2) and tri-tert-butylphosphine (t-Bu3P). The M06-2X functional in connection with 6-31+G(d) basis set was used to optimize the structures of related species including in the Gibbs free energy profiles, and the energies were obtained at M06-2X/6-311++G(d,p) level of theory, where the solvent effect was simulated with the integral equation formalism, polarized continuum mode (IEF-PCM) in both calculations. Our results suggest that the FLPs-catalysed hydrogenation of silyl enol ethers in toluene begins with the formation of B-P-FLPs followed by hydrogen activation, proton transfer and hydride transfer to complete the process. It is obvious from the Gibbs free energy profile that the proton transfer is rate-determining step, the formation of B-P-FLPs and proton transfer are endothermal and the hydride transfer is no barrier. This indicates that the amount of H2 and prototype substrate have significant influence on the FLPs-catalysed hydrogenation of silyl enol ethers. A higher temperature (328.15 K) is disadvantageous to hydrogenation reaction catalysed by FLPs but the reaction could be accelerated under higher pressure (4040 kPa). The Gibbs free energy profile calculations for trimethyl((1-phenylprop-1-en-1-yl)oxy)silane (Et-TMS) and tert-butyldimethyl((1-phenylvinyl)oxy)silane (Me-TBS) reveal that substituent group may inhibit the hydride transfer as the absence of a suitable construction for R-H-transfer, where the hydride does not direct to the C+ of silyl enol ethers and the distance between C+ and hydride is longer. These results would be helpful to design another novel FLPs-catalysed hydrogenation reaction for silyl enol ethers.

参考文献

[1]
Liu, W. P.; Sahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858.
[2]
Wang, Q. Y.; Santos, S.; Urbina-Blanco, C. A.; Hernandez, W. Y.; Imperor-Clerc, M.; Vovk, E. I.; Marinova, M.; Ersen, O.; Baaziz, W.; Safonova, O. V.; Khodakov, A. Y.; Saeys, M.; Ordomsky, V. V. Appl. Catal. B-Environ. 2021, 290, 120036.
[3]
Chen, S. N.; Deng, J.; Ye, C.; Xu, C. C.; Huai, L. Y.; Ling, X.; Li, J.; Li, X. Y. Chem. Eng. J. 2021, 410, 128825.
[4]
Wang, W. L.; Niu, J. F.; Yang, Z. F. J. Hazard. Mater. 2021, 411, 121912.
[5]
Ye, R. P.; Lin, L.; Li, Q. H.; Zhou, Z. F.; Wang, T. T.; Russell, C. K.; Adidharma, H.; Xu, Z. H.; Yao, Y. G.; Fan, M. H. Catal. Sci. Technol. 2018, 8, 3428.
[6]
Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Appl. Catal. B-Environ. 2018, 227, 386.
[7]
Schreier, M. R.; Pfund, B.; Guo, X. W.; Wenger, O. S. Chem. Sci. 2020, 11, 8582.
[8]
Lux, S.; Baldauf-Sommerbauer, G.; Siebenhofer, M. ChemSusChem 2018, 11, 3357.
[9]
Meemken, F.; Baiker, A. Chem. Rev. 2017, 117, 11522.
[10]
Hu, S. B.; Chen, M. W.; Zhai, X. Y.; Zhou, Y. G. Acta Chim. Sinica 2018, 76, 103. (in Chinese)
[10]
( 胡书博, 陈木旺, 翟小勇, 周永贵, 化学学报, 2018, 76, 103.)
[11]
Liu, X.; Han, Z. B.; Wang, Z.; Ding, K. L. Acta Chim. Sinica 2014, 72, 849. (in Chinese)
[11]
( 刘旭, 韩召斌, 王正, 丁奎岭, 化学学报, 2014, 72, 849.)
[12]
Liu, Y. B.; Du, H. F. Acta Chim. Sinica 2014, 72, 771. (in Chinese)
[12]
( 刘勇兵, 杜海峰, 化学学报, 2014, 72, 771.)
[13]
Meemken, F.; Rodriguez-Garcia, L. J. Phys. Chem. Lett. 2018, 9, 996.
[14]
Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2012, 70, 1427. (in Chinese)
[14]
( 谢建华, 周其林, 化学学报, 2012, 70, 1427.)
[15]
Zhang, Q.; Liu, A.; Yu, H. Z.; Fu, Y. Acta Chim. Sinica 2018, 76, 113. (in Chinese)
[15]
( 张琪, 刘奥, 于海珠, 傅尧, 化学学报, 2018, 76, 113.)
[16]
Schauermann, S. J. Phys. Chem. Lett. 2018, 9, 5555.
[17]
Bai, Y. P.; Cui, C. M. Acta Chim. Sinica 2020, 78, 763. (in Chinese)
[17]
( 白云平, 崔春明, 化学学报, 2020, 78, 763.)
[18]
Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.
[19]
Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.
[20]
Mömming, C. M.; Frömel, S.; Kehr, G.; Fröhlich, R.; Grimme, S.; Erker, G. J. Am. Chem. Soc. 2009, 131, 12280.
[21]
Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.
[22]
Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 4088.
[23]
Zhang, Z.; Du, H. Angew. Chem. Int. Ed. 2015, 54, 623.
[24]
Zhang, Z. H.; Du, H. F. Org. Lett. 2015, 17, 6266.
[25]
Wei, S. M.; Feng, X. Q.; Du, H. F. Org. Biomol. Chem. 2016, 14, 8026.
[26]
Wei, S. M.; Du, H. F. J. Am. Chem. Soc. 2014, 136, 12261.
[27]
Liu, Y. B.; Du, H. F. J. Am. Chem. Soc. 2013, 135, 6810.
[28]
Liu, Y. B.; Du, H. F. J. Am. Chem. Soc. 2013, 135, 12968.
[29]
Lu, Z. P.; Cheng, Z. H.; Chen, Z. X.; Weng, L. H.; Li, Z. H.; Wang, H. D. Angew. Chem.-Int. Ed. 2011, 50, 12227.
[30]
Liu, Q.; Yang, L.; Yao, C.; Geng, J.; Wu, Y.; Hu, X. Org. Lett. 2021, 23, 3685.
[31]
Rouf, A. M.; Huang, Y.; Dong, S.; Zhu, J. Inorg. Chem. 2021, 60, 5598.
[32]
Wang, H. L.; Zhang, W. N.; Lu, L.; Liu, D. P.; Liu, D. D.; Li, T. Z.; Yan, S. C.; Zhao, S. Q.; Zou, Z. G. Appl. Catal. B-Environ. 2021, 283, 119639.
[33]
Szynkiewicz, N.; Chojnacki, J.; Grubba, R. Inorg. Chem. 2020, 59, 6332.
[34]
Adenot, A.; von Wolff, N.; Lefevre, G.; Berthet, J. C.; Thuery, P.; Cantat, T. Chem.-Eur. J. 2019, 25, 8118.
[35]
Kehr, G.; Erker, G. Chem. Rec. 2017, 17, 803.
[36]
Wang, H. D.; Frohlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.
[37]
Greb, L.; Ona-Burgos, P.; Kubas, A.; Falk, F. C.; Breher, F.; Fink, K.; Paradies, J. Dalton Trans. 2012, 41, 9056.
[38]
Ren, X. Y.; Du, H. F. J. Am. Chem. Soc. 2016, 138, 810.
[39]
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
[40]
Wang, Y. H.; Jie, J. L.; Zhao, H. M.; Bai, Y.; Qin, P. X.; Song, D. Acta Chim. Sinica 2018, 76, 475. (in Chinese)
[40]
( 王英辉, 节家龙, 赵红梅, 白羽, 秦佩萱, 宋迪, 化学学报, 2018, 76, 475.)
[41]
Wei, S.; Zhang, Z.; Liu, S.; Wang, Y. New J. Chem. 2021, 45, 11202.
[42]
Huang, F.; Jiang, J. L.; Wen, M. W.; Wang, Z. X. J. Theor. Comput. Chem. 2014, 13, 1350074.
[43]
Wang, Y. H.; Wei, S. M.; Wang, K.; Xu, R. R.; Zhao, H. M. Acta Chim. Sinica 2020, 78, 271. (in Chinese)
[43]
( 王英辉, 魏思敏, 王康, 徐蓉蓉, 赵红梅, 化学学报, 2020, 78, 271.)
[44]
Zhao, J. Y.; Wang, G. Q.; Li, S. H. Dalton Trans. 2015, 44, 9200.
[45]
Rokob, T. A.; Hamza, A.; Stirling, A.; Pápai, I. J. Am. Chem. Soc. 2009, 131, 2029.
[46]
Antinolo, A.; Carrillo-Hermosilla, F.; Fernandez-Galan, R.; Martinez-Ferrer, J.; Alonso-Moreno, C.; Bravo, I.; Moreno-Blazquez, S.; Salgado, M.; Villasenor, E.; Albaladejo, J. Dalton Trans. 2016, 45, 10717.
[47]
Zhao, L.; Li, H.; Lu, G.; Huang, F.; Zhang, C.; Wang, Z.-X. Dalton Trans. 2011, 40, 1929.
[48]
Rokob, T. A.; Hamza, A.; Papai, I. J. Am. Chem. Soc. 2009, 131, 10701.
[49]
Wei, S. M.; Wang, Y. H.; Zhao, H. M. Acta Chim. Sinica 2019, 77, 278. (in Chinese)
[49]
( 魏思敏, 王英辉, 赵红梅, 化学学报, 2019, 77, 278.)
[50]
Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.
[51]
Das, S.; Pati, S. K. Chem.-Eur. J. 2017, 23, 1078.
[52]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Ha-segawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 16, Revision A. 03, Gaussian, Inc., Wallingford, CT, 2016.
文章导航

/