丰产金属催化烯基金属试剂的不对称烯基化反应研究进展
收稿日期: 2021-07-20
网络出版日期: 2021-09-17
基金资助
上海市“超级博士后”激励计划(2020272); 国家自然科学基金(21620102003); 国家自然科学基金(21772119); 国家自然科学基金(21831005)
Development of Earth-Abundant Metals-Catalyzed Enantioselective Alkenylations Using Alkenyl Metal Reagents
Received date: 2021-07-20
Online published: 2021-09-17
Supported by
Shanghai Post-Doctoral Excellence Program(2020272); National Natural Science Foundation of China(21620102003); National Natural Science Foundation of China(21772119); National Natural Science Foundation of China(21831005)
烯丙位手性中心不仅广泛存在于天然产物和药物活性分子中, 也是有机合成中的重要合成砌块. 过渡金属催化烯基金属试剂作为亲核试剂的不对称加成或偶联反应是构建这一结构非常有吸引力的策略之一. 在众多金属催化剂中, 铁钴镍铜等丰产金属由于其独特的催化活性以及低毒性、环境友好等优点而被用来代替铑钯等稀有金属应用于此类不对称烯基化反应中, 并取得了显著的成果. 基于此, 本文将综述丰产金属催化的烯基金属试剂参与的不对称烯基化反应研究进展. 主要包括: (1)钴催化的不对称烯基化反应, (2)镍催化的不对称烯基化反应, (3)铜催化的不对称烯基化反应以及(4)其他丰产金属催化的不对称烯基化反应等四部分.
吴良 , 魏瀚林 , 申杰峰 , 陈建中 , 张万斌 . 丰产金属催化烯基金属试剂的不对称烯基化反应研究进展[J]. 化学学报, 2021 , 79(11) : 1331 -1344 . DOI: 10.6023/A21070338
Allylic chiral centers are widely present in natural products and pharmaceutically active molecules, and play a vital role in the construction of organic compounds through pericyclic reactions, oxidations or reductions and other transformations. The transition metal-catalyzed asymmetric addition or coupling reaction using alkenyl metal nucleophiles is one of the most attractive strategies for the synthesis of these structures. Among the many metal catalysts, earth-abundant transition metals such as iron, cobalt, nickel and copper have been used to replace precious metals such as rhodium and palladium, and have gained attention for use in enantioselective alkenylations. Indeed, remarkable advances have been achieved with these catalysts due to their unique catalytic activity, low toxicity and environmentally friendliness. The earth-abundant transition metals are known to undergo facile one electron oxidation state changes. In the reaction process, the earth-abundant transition metals have the ability to undergo two-electron transfer and single-electron transfer processes, therefore they have more valence changes and catalytic pathways which can be exploited. Based on this, this article will review the latest research in earth-abundant metal-catalyzed enantioselective alkenylation using alkenyl metal reagents. It is divided into four sections consisting of cobalt-catalyzed enantioselective alkenylations using alkenyl metal reagents, nickel-catalyzed enantioselective alkenylations using alkenyl metal reagents, copper-catalyzed enantioselective alkenylations using alkenyl metal reagents, and other earth-abundant transition metals catalyzed enantioselective alkenylations using alkenyl metal reagents.
[1] | (a)Catalysis without Precious Metals, Ed.: Bullock, R. M., Wiley-VCH, Weinheim, 2010. |
[1] | (b) Morris R. H. Chem. Soc. Rev. 2009, 38, 2282. |
[1] | (c) Zhang L.; Huang Z. Synlett 2013, 1745. |
[1] | (d) Zhu S.-F.; Zhou Q.-L. Natl. Sci. Rev. 2014, 1, 580. |
[1] | (e) Guo N.; Zhu S. Chin. J. Org. Chem. 2015, 35, 1383. (in Chinese) |
[1] | ( 郭娜, 朱守非, 有机化学, 2015, 35, 1383.) |
[1] | (f) Li J.; Liu K.; Duan X.; Liu J. Chin. J. Org. Chem. 2017, 37, 314. (in Chinese) |
[1] | ( 李娟华, 刘昆明, 段新方, 刘晋彪, 有机化学, 2017, 37, 314.) |
[1] | (g) Wu Z.; Zhang W. Chin. J. Org. Chem. 2017, 37, 2250. (in Chinese) |
[1] | ( 吴正兴, 张万斌, 有机化学, 2017, 37, 2250.) |
[1] | (h) Obligacion J. V.; Chirik P. J. Nat. Rev. Chem. 2018, 2, 15. |
[1] | (i) Chen J.; Lu Z. Org. Chem. Front. 2018, 5, 260. |
[1] | (j) Chen J.; Guo J.; Lu Z. Chin. J. Chem. 2018, 36, 1075. |
[1] | (k) Fu X.; Zhao W. Chin. J. Org. Chem. 2019, 39, 625. (in Chinese) |
[1] | ( 付晓飞, 赵文献, 有机化学, 2019, 39, 625.) |
[1] | (l) Sun Y.; Guan R.; Liu Z.; Wang Y. Chin. J. Org. Chem. 2020, 40, 899. (in Chinese) |
[1] | ( 孙越, 关瑞, 刘兆洪, 王也铭, 有机化学, 2020, 40, 899.) |
[1] | (m) Guo J.; Cheng Z.; Chen J.; Chen X.; Lu Z. Acc. Chem. Res. 2021, 54, 2701. |
[1] | (n) Chen J.; Xi T.; Lu Z. Org. Lett. 2014, 16, 6452. |
[1] | (o) An L.; Tong F.; Zhang X. Acta Chim. Sinica 2018, 76, 977. (in Chinese) |
[1] | ( 安伦, 童非非, 张新刚, 有机化学, 2018, 76, 977.) |
[1] | (p) Cheng B.; Liu W.; Lu Z. J. Am. Chem. Soc. 2018, 140, 5014. |
[1] | (q) Wang S.; Sun M.; Zhang H.; Zhang J.; He Y.; Feng Z. CCS Chem. 2020, 2, 2164. |
[1] | (r) Zou S.; Zhang T.; Wang S.; Huang H. Chin. J. Chem. 2020, 38, 389. |
[1] | (s) Wang G.-X.; Yin J.; Li J.; Yin Z.-B.; Wu B.; Wei J.; Zhang W.-X.; Xi Z. CCS Chem. 2021, 3, 308. |
[1] | (t) Xu S.; Liu G.; Huang Z. Chin. J. Chem. 2021, 39, 585. |
[1] | (u) Li W.-D.; Chen J.; Zhu D.-Y.; Xia J.-B. Chin. J. Chem. 2021, 39, 614. |
[2] | (a) Pellissier H.; Clavier H. Chem. Rev. 2014, 114, 2775. |
[2] | (b) Gandeepan P.; Cheng C.-H. Acc. Chem. Res. 2015, 48, 1194. |
[2] | (c) Gu Z.; Ji S. Acta Chim. Sinica 2018, 76, 347. (in Chinese) |
[2] | ( 顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.) |
[2] | (d) Sun Y.; Ding Q.; Yu Y.; He Y.; Huang F. Chin. J. Org. Chem. 2019, 39, 3363. (in Chinese) |
[2] | ( 孙义明, 丁奇峰, 于杨, 何益得, 黄菲, 有机化学, 2019, 39, 3363.) |
[2] | (e) Dai Z.; Yu Z.; Bai Y.; Li J.; Peng J. Chin. J. Org. Chem. 2020, 40, 1177. (in Chinese) |
[2] | ( 代自男, 余泽浩, 白赢, 厉嘉云, 彭家建, 有机化学, 2020, 40, 1177.) |
[2] | (f) Wen J.; Wang F.; Zhang X. Chem. Soc. Rev. 2021, 50, 3211. |
[2] | (g) Gao K.; Lee P.-S.; Fujita T.; Yoshikai N. J. Am. Chem. Soc. 2010, 132, 12249. |
[2] | (h) Friedfeld M. R.; Shevlin M.; Hoyt J. M.; Krska S. W.; Tudge M. T.; Chirik P. J. Science 2013, 342, 1076. |
[2] | (i) Chen Q. A.; Kim D. K.; Dong V. M. J. Am. Chem. Soc. 2014, 136, 3772. |
[2] | (j) Yang J.; Yoshikai N. J. Am. Chem. Soc. 2014, 136, 16748. |
[2] | (k) Zhang L.; Zuo Z.; Wan X.; Huang Z. J. Am. Chem. Soc. 2014, 136, 15501. |
[2] | (l) Santhoshkumar R.; Mannathan S.; Cheng C.-H. J. Am. Chem. Soc. 2015, 137, 16116. |
[2] | (m) Friedfeld M. R.; Shevlin M.; Marguloeux G. W.; Campeau L.; Chirik P. J. J. Am. Chem. Soc. 2016, 138, 3314. |
[2] | (n) Wu L.; Shao Q.; Yang G.; Zhang W. Chem. Eur. J. 2018, 24, 1241. |
[2] | (o) Hu Y.; Zhang Z.; Zhang J.; Liu Y.; Gridnev I. D.; Zhang W. Angew. Chem. Int. Ed. 2019, 58, 15767. |
[2] | (p) Li X.; Wu X.; Tang L.; Xie F.; Zhang W. Chem. Asian J. 2019, 14, 3835. |
[2] | (q) Cheng Z.; Xing S.; Guo J.; Cheng B.; Hu L.-F.; Zhang X.-H.; Lu Z. Chin. J. Chem. 2019, 37, 457. |
[2] | (r) Wu L.; Shao Q.; Kong L.; Chen J.; Wei Q.; Zhang W. Org. Chem. Front. 2020, 7, 862. |
[2] | (s) Lin X.; Tan Z.; Yang W.; Yang W.; Liu X.; Feng X. CCS Chem. 2020, 2, 1423. |
[2] | (t) Hu Y.; Zhang Z.; Liu Y.; Zhang W. Angew. Chem. Int. Ed. 2021, 60, 16989. |
[3] | (a) Tasker S. Z.; Standley E. A.; Jamison T. F. Nature 2014, 509, 299. |
[3] | (b) Butt N. A.; Zhang W. Chem. Soc. Rev. 2015, 44, 7929. |
[3] | (c) Choi J.; Fu G. C. Science 2017, 356, eaaf7230. |
[3] | (d) Fu G. C. ACS Cent. Sci. 2017, 3, 692. |
[3] | (e) Zhang Z.; Butt N. A.; Zhou M.; Liu D.; Zhang W. Chin. J. Chem. 2018, 36, 443. |
[3] | (f) Quan M.; Wu L.; Yang G.; Zhang W. Chem. Commun. 2018, 54, 10394. |
[3] | (g) Chen J.; Butt N. A.; Zhang W. Res. Chem. Intermed. 2019, 45, 5959. |
[3] | (h) Liu Y.; Dong X.-Q.; Zhang X. Chin. J. Org. Chem. 2020, 40, 1096. (in Chinese) |
[3] | ( 刘元华, 董秀琴, 张绪穆, 有机化学, 2020, 40, 1096.) |
[3] | (i) Cheng L.; Zhou Q. Acta Chim. Sinica 2020, 78, 1017. (in Chinese) |
[3] | ( 程磊, 周其林, 化学学报, 2020, 78, 1017.) |
[3] | (j) Dai H.; Wu F.; Bai D. Chin. J. Org. Chem. 2020, 40, 1423. (in Chinese) |
[3] | ( 代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40, 1423.) |
[3] | (k) Chen S.; Zhao Y. Chin. J. Org. Chem. 2020, 40, 3078. (in Chinese) |
[3] | ( 陈思, 赵延川, 有机化学, 2020, 40, 3078.) |
[3] | (l) Quan M.; Tang L.; Shen J.; Yang G.; Zhang W. Chem. Commun. 2017, 53, 609. |
[3] | (m) Zhang Y.; He J.; Song P.; Wang Y.; Zhu S. CCS Chem. 2020, 2, 2259. |
[3] | (n) Li Z.; Wu D.; Ding C.; Yin G. CCS Chem. 2020, 2, 576. |
[3] | (o) Li B.; Chen J.; Zhang Z.; Gridnev I. D.; Zhang W. Angew. Chem. Int. Ed. 2019, 58, 7329. |
[3] | (p) Liu D.; Li B.; Chen J.; Gridnev I. D.; Yan. D.; Zhang, W. Nat. Commun. 2020, 11, 5935. |
[3] | (q) Hu Y.; Chen J.; Li B.; Zhang Z.; Gridnev I. D.; Zhang W. Angew. Chem. Int. Ed. 2020, 59, 5371. |
[3] | (r) Chen J.; Zhang W. Chin. J. Org. Chem. 2020, 40, 4372. (in Chinese) |
[3] | ( 陈建中, 张万斌, 有机化学, 2020, 40, 4372. ) |
[3] | (s) Li B.; Liu D.; Hu Y.; Chen J.; Zhang Z.; Zhang W. Eur. J. Org. Chem. 2021, 3421. |
[3] | (t) Zhu C.; Yue H.; Nikolaienko P.; Rueping M. CCS Chem. 2020, 2, 179. |
[3] | (u) Han X.-W.; Zhang T.; Yao W.-W.; Chen H.; Ye M. CCS Chem. 2020, 2, 955. |
[3] | (v) Xiao C.; Xiao W. Chin. J. Org. Chem. 2020, 40, 3004. (in Chinese) |
[3] | ( 肖聪, 肖文精, 有机化学, 2020, 40, 3004.) |
[4] | (a) Alexakis A.; Bäckvall J. E.; Krause N.; Pámies O.; Diéguez M. Chem. Rev. 2008, 108, 2796. |
[4] | (b) Shi Z.; Zhang C.; Tang C.; Jiao N. Chem. Soc. Rev. 2012, 41, 3381. |
[4] | (c) Guo X.-X.; Gu D.-W.; Wu Z.; Zhang W. Chem. Rev. 2015, 115, 1622 |
[4] | (d) Liu Y.; Zhang W. Chin. J. Org. Chem. 2016, 36, 2249. (in Chinese) |
[4] | ( 刘媛媛, 张万斌, 有机化学, 2016, 36, 2249.) |
[4] | (e) Duan X.; Liu N.; Wang J.; Ma J. Chin. J. Org. Chem. 2019, 39, 661. (in Chinese) |
[4] | ( 段希焱, 刘宁, 王佳, 马军营, 有机化学, 2019, 39, 661.) |
[4] | (f) Xie J.; Wang X.; Wu F.; Zhang J. Chin. J. Org. Chem. 2019, 39, 3026. (in Chinese) |
[4] | ( 谢建伟, 汪小创, 吴丰田, 张洁, 有机化学, 2019, 39, 3026.) |
[4] | (g) Lei L.; Li C.; Mo D. Chin. J. Org. Chem. 2019, 39, 2989. (in Chinese) |
[4] | ( 雷禄, 李承璟, 莫冬亮, 有机化学, 2019, 39, 2989.) |
[4] | (h) Wang C.; Zhou F.; Zhou J. Chin. J. Org. Chem. 2020, 40, 3065. (in Chinese) |
[4] | ( 王才, 周锋, 周剑, 有机化学, 2020, 40, 3065.) |
[4] | (i) Wang M.; Zhang Z.; Xie F.; Zhang W. Chem. Commun. 2014, 50, 3163. |
[4] | (j) Wu X.; Xie F.; Ling Z.; Tang L.; Zhang W. Adv. Synth. Catal. 2016, 358, 2510. |
[4] | (k) Zhang D.-D.; Liu Y.-L.; Wang Y.; Wei H.; Shi M.; Wang F.-J. Chin. Chem. Lett. 2016, 27, 563. |
[4] | (l) Ling Z.; Singh S.; Xie F.; Wu L.; Zhang W. Chem. Commun. 2017, 53, 5364. |
[4] | (m) Shao Q.; Wu L.; Chen J.; Gridnev I. D.; Yang G.; Xie F.; Zhang W. Adv. Synth. Catal. 2018, 360, 4625. |
[4] | (n) Ling Z.; Xie F.; Gridnev I. D., Terada M.; Zhang W. Chem. Commun. 2018, 54, 9446. |
[4] | (o) Wu X.; Xie F.; Gridnev I. D.; Zhang W. Org. Lett. 2018, 20, 1638. |
[4] | (p) Cheng Z.; Chen P.; Liu G. Acta Chim. Sinica 2019, 77, 856. (in Chinese) |
[4] | ( 成忠明, 陈品红, 刘国生, 化学学报, 2019, 77, 856.) |
[4] | (q) You Y.; Van Pham Q.; Ge S. CCS Chem. 2019, 1, 455. |
[4] | (r) Lin F.; Liang Y.; Li X.; Song S.; Jiao N. Acta Chim. Sinica 2019, 77, 906. (in Chinese) |
[4] | ( 林凤闺蓉, 梁宇杰, 郦鑫耀, 宋颂, 焦宁, 化学学报, 2019, 77, 906.) |
[4] | (s) Gan X.-C.; Yin L. CCS Chem. 2020, 2, 203. |
[4] | (t) Gao X.; Xiao Y.-L.; Zhang S.; Wu J.; Zhang X. CCS Chem. 2020, 2, 1463. |
[4] | (u) Zhao Q.; Isenegger P. G.; Wilson T. C.; Sap J. B. I.; Guibbal F.; Lu L.; Gouverneur V.; Shen Q. CCS Chem. 2020, 2, 1921. |
[4] | (v) Huang H.; Lin H.; Wang M.; Liao J. Acta Chim. Sinica 2020, 78, 1229. (in Chinese) |
[4] | ( 黄浩, 林华鑫, 王敏, 廖建, 化学学报, 2020, 78, 1229.) |
[4] | (w) Zhang R.; Xu B.; Zhang Z.; Zhang J. Acta Chim. Sinica 2020, 78, 245. (in Chinese) |
[4] | ( 张荣华, 许冰, 张展鸣, 张俊良, 化学学报, 2020, 78, 245.) |
[4] | (x) Zhang G.; Liang Y.; Qin T.; Xiong T.; Liu S.; Guan W.; Zhang Q. CCS Chem. 2020, 2, 1737. |
[4] | (y) Wu F.-P.; Holz J.; Yuan Y.; Wu X.-F. CCS Chem. 2020, 2, 2643. |
[4] | (z) Jiang C.; Chen P.; Liu G. CCS Chem. 2020, 2, 1884. |
[5] | (a) Hoveyda A. H.; Evans D. A.; Fu G. C. Chem. Rev. 1993, 93, 1307. |
[5] | (b) Corey E. J.; Lalic G. Org. Lett. 2007, 9, 4921. |
[5] | (c) König C. M.; Gebhardt B.; Schleth C.; Dauber M.; Koert U. Org. Lett. 2009, 11, 2728. |
[5] | (d) Hickmann V.; Alcarazo M.; Fürstner A. J. Am. Chem. Soc. 2010, 132, 11042. |
[5] | (e) May T. L.; Dabrowski J. A.; Hoveyda A. H. J. Am. Chem. Soc. 2011, 133, 736. |
[5] | (f) McDonald R. I.; Liu G.; Stahl S. S. Chem. Rev. 2011, 111, 2981. |
[5] | (g) Dong Z.; Ren Z.; Thompson S. J.; Xu Y.; Dong G. Chem. Rev. 2017, 117, 9333. |
[5] | (h) Yan T.; Guironnet D. Sci. Chin. Chem. 2020, 63, 755. |
[6] | (a) Denmark S. E.; Almstead N. G. Modern Carbonyl Chemistry, Ed.: Otera, J., Wiley-VCH, Weinheim, 2000, Chapter 10, p. 299. |
[6] | (b) Yamamoto Y.; Asao N. Chem. Rev. 1993, 93. 2207. |
[6] | (c) Kennedy J. W. J.; Hall D. G. Angew. Chem. Int. Ed. 2003, 42, 4732. |
[6] | (d) Chrétien J.-M.; Zammattio F.; Gauthier D.; Grognec E. L.; Paris M.; Quintard J.-P. Chem. Eur. J. 2006, 12, 6816. |
[6] | (e) Yamamoto H.; Wadamoto M. Chem. Asian J. 2007, 2, 692. |
[6] | (f) Yus M.; González-Gómez J. C.; Foubelo F. Chem. Rev. 2011, 111, 7774. |
[7] | (a) Hokanson G. C.; French J. C. J. Org. Chem. 1985, 50, 462. |
[7] | (b) Shevchenko V. P.; Myagkova G. I.; Lazurkina T. Y.; Dyomin P. M.; Shrarn S. I.; Zabolotsky D. A.; Nagayev I. Y.; Belosludtsev Y. Y.; Evstigneeva R. P.; Myasoyedov N. F. J. Label. Compd. Radiopharm. 1989, 27, 1177. |
[7] | (c) Yoshida W. Y.; Bryan P. J.; Baker B. J.; McClintock J. B. J. Org. Chem. 1995, 60, 780. |
[7] | (d) Inoue M.; Nakada M. J. Am. Chem. Soc. 2007, 129, 4164. |
[7] | (e) Lachance H.; Hall D. G. Organic Reactions, Vol. 73, Eds.: Denmark, S. E. et al. John Wiley & Sons, Inc., 2008, Chapter 1, p. 1. |
[8] | Huang Y.; Huang R.-Z.; Zhao Y. J. Am. Chem. Soc. 2016, 138, 6571. |
[9] | Zhang H.; Huang W.; Wang T.; Meng F. Angew. Chem. Int. Ed. 2019, 58, 11049. |
[10] | Zhou Y.; Wang L.; Yuan G.; Liu S.; Sun X.; Yuan C.; Yang Y.; Bian Q.; Wang M.; Zhong J. Org. Lett. 2020, 22, 4532. |
[11] | (a) Brak K.; Ellman J. A. Org. Lett. 2010, 12, 2004. |
[11] | (b) Charest M. G.; Siegel D. R.; Myers A. G. J. Am. Chem. Soc. 2005, 127, 8292. |
[11] | (c) Corbett J. W.; Ko S. S.; Rodgers J. D.; Gearhart L. A.; Magnus N. A.; Bacheler L. T.; Diamond S.; Jeffrey S.; Klabe R. M.; Cordova B. C.; Garber S.; Logue K.; Trainor G. L.; Anderson P. S.; Erickson-Viitanen S. K. J. Med. Chem. 2000, 43, 2019. |
[12] | Wang X.; Quan M.; Xie F.; Yang G.; Zhang W. Tetrahedron Lett. 2018, 59, 1573. |
[13] | Quan M.; Wang X.; Wu L.; Gridnev I. D.; Yang G.; Zhang W. Nat. Commun. 2018, 9, 2258. |
[14] | Lv X.-Y.; Fan C.; Xiao L.-J.; Xie J.-H.; Zhou Q.-L. CCS Chem. 2019, 1, 328. |
[15] | Chen Y.-G.; Shuai B.; Xu X.-T.; Li Y.-Q.; Yang Q.-L.; Qiu H.; Zhang K.; Fang P.; Mei T.-S. J. Am. Chem. Soc. 2019, 141, 3395. |
[16] | Wang Z.-C.; Gao J.; Cai Y.; Ye X.; Shi S.-L. CCS Chem. 2021, 3, 1445. |
[17] | Dai X.; Strotman N. A.; Fu G. C. J. Am. Chem. Soc. 2008, 130, 3302. |
[18] | Lou S.; Fu G. C. J. Am. Chem. Soc. 2010, 132, 5010. |
[19] | Choi J.; Fu G. C. J. Am. Chem. Soc. 2012, 134, 9102. |
[20] | (a)Organosulfur Chemistry in Asymmetric Synthesis, Eds.: Toru, T.; Bolm, C., Wiley-VCH, Weinheim, 2008. |
[20] | (b) Wilden J. D. J. Chem. Res. 2010, 34, 541. |
[20] | (c) Chen X.; Hussain S.; Parveen S.; Zhang S.; Yang Y.; Zhu C. Curr. Med. Chem. 2012, 19, 3578. |
[20] | (d) Shah S. S. A.; Rivera G.; Ashfaq M. Mini-Rev. Med. Chem. 2013, 13, 70. |
[20] | (e) Scozzafava A.; Carta F.; Supuran C. T. Expert Opin. Ther. Patents 2013, 23, 203. |
[21] | Choi J.; Martín-Gago P.; Fu G. C. J. Am. Chem. Soc. 2014, 136, 12161. |
[22] | Wang Z.; Yin H.; Fu G. C. Nature 2018, 563, 379. |
[23] | Wu L.; Yang G.; Zhang W. CCS Chem. 2019, 1, 623. |
[24] | Wang Z.; Yang? Z.-P.; Fu G. C. Nat. Chem. 2021, 13, 236. |
[25] | Tomita D.; Wada R.; Kanai M.; Shibasaki M. J. Am. Chem. Soc. 2005, 127, 4138. |
[26] | Tomita D.; Kanai M.; Shibasaki M. Chem. Asian. J. 2006, 1-2, 161. |
[27] | Lipshutz B. H.; Pegram J. J.; Morey M. C. Tetrahedron Lett. 1981, 22, 4603. |
[28] | (a) Lin G.-Q.; You Q.-D.; Cheng J.-F. Chiral Drugs: Chemistry and Biological Action, Wiley, Hoboken, NJ, 2011. |
[28] | (b) Chambers R. D. Fluorine in Organic Chemistry, Blackwell, Oxford, 2004. |
[28] | (c) Shah P.; Westwell A. D. J. Enzyme Inhib. Med. Chem. 2007, 22, 527. |
[28] | (d) Müller K.; Faeh C.; Diederich F. Science 2007, 317, 1881. |
[28] | (e) Lv C.-P.; Shen Q.-L.; Liu D. Chin. J. Org. Chem. 2012, 32, 1380. (in Chinese) |
[28] | ( 吕翠萍, 沈其龙, 刘丹, 有机化学, 2012, 32, 1380.) |
[29] | Motoki R.; Tomita D.; Kanai M.; Shibasaki M. Tetrahedron Lett. 2006, 47, 8083. |
[30] | Tomita D.; Yamatsugu K.; Kanai M.; Shibasaki M. J. Am. Chem. Soc. 2009, 131, 6946. |
[31] | Müller D.; Hawner C.; Tissot M.; Palais L.; Alexakis A. Synlett 2010, 11, 1694. |
[32] | (a) Müller D.; Tissot M.; Alexakis A. Org. Lett. 2011, 13, 3040. |
[32] | (b) Müller D.; Alexakis A. Chem. Eur. J. 2013, 19, 15226. |
[33] | Müller D.; Alexakis A. Org. Lett. 2012, 14, 1842. |
[34] | Cottet P.; Müller D.; Alexakis A. Org. Lett. 2013, 15, 828. |
[35] | May T. L.; Dabrowski J. A.; Hoveyda A. H. J. Am. Chem. Soc. 2011, 133, 736. |
[36] | Mu?ller D. S.; Werner V.; Akyol S.; Schmalz H.-G.; Marek I. Org. Lett. 2017, 19, 3970. |
[37] | Chong Q.; Yue Z.; Zhang S.; Ji C.; Cheng F.; Zhang H.; Hong X.; Meng F. ACS Catal. 2017, 7, 5693. |
[38] | Mcgrath K. P.; Hubbell A. K.; Zhou Y.; Santos D. P.; Torker S.; Romiti F.; Hoveyda A. H. Adv. Synth. Catal. 2020, 362, 370. |
[39] | (a) Trost B. M.; Van Vranken D. L. Chem. Rev. 1996, 96, 395. |
[39] | (b) Trost B. M.; Crawley M. L. Chem. Rev. 2003, 103, 2921. |
[39] | (c) Lu Z.; Ma S. Angew. Chem. Int. Ed. 2008, 47, 258. |
[39] | (d) Diéguez M.; Pàmies O. Acc. Chem. Res. 2010, 43, 312. |
[39] | (e) Weaver J. D.; Recio A.; Grenning A. J.; Tunge J. A. Chem. Rev. 2011, 111, 1846. |
[39] | (f) Huo X.; Yang G.; Liu D.; Liu Y.; Gridnev I. D.; Zhang W. Angew. Chem. Int. Ed. 2014, 53, 6776. |
[39] | (g) Huo X.; He R.; Zhang X.; Zhang W. J. Am. Chem. Soc. 2016, 138, 11093. |
[39] | (h) Tang H.; Huo X.; Meng Q.; Zhang W. Acta Chim. Sinica 2016, 74, 219. (in Chinese) |
[39] | ( 汤溟淏, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.) |
[39] | (i) Huo X.; He R.; Fu J.; Zhang J.; Yang G.; Zhang W. J. Am. Chem. Soc. 2017, 139, 9819. |
[39] | (j) Huo X.; Zhang J.; Fu J.; Zhang W. J. Am. Chem. Soc. 2018, 140, 2080. |
[39] | (k) Zhang M.-M.; Luo Y.-Y.; Lu L.-Q.; Xiao W.-J. Acta Chim. Sinica 2018, 76, 838. (in Chinese) |
[39] | ( 张毛毛, 骆元元, 陆良秋, 肖文精, 化学学报, 2018, 76, 838.) |
[39] | (l) Li Z.; Zheng J.; Li C.; Wu W.; Jiang H. Chin. J. Chem. 2019, 37, 140. |
[39] | (m) Wang R.; Luan Y.; Ye M. Chin. J. Chem. 2019, 37, 720. |
[39] | (n) Yao K.; Liu H.; Yuan Q.; Liu Y.; Liu D.; Zhang W. Acta Chim. Sinica 2019, 77, 993. (in Chinese) |
[39] | ( 姚坤, 刘浩, 袁乾家, 刘燕刚, 刘德龙, 张万斌, 化学学报, 2019, 77, 993.) |
[39] | (o) Zhang H.-H.; Yu S. Acta Chim. Sinica 2019, 77, 832. (in Chinese) |
[39] | ( 张洪浩, 俞寿云, 化学学报, 2019, 77, 832.) |
[39] | (p) Zhang H.; Gu Q.; You S. Chin. J. Org. Chem. 2019, 39, 15. (in Chinese) |
[39] | ( 张慧君, 顾庆, 游书力, 有机化学, 2019, 39, 15.) |
[39] | (q) Huang L.; Cai Y.; Zhang H.-J.; Zheng C.; Dai L.-X.; You S.-L. CCS Chem. 2019, 1, 106. |
[39] | (r) Wang R.-Q.; Shen C.; Cheng X.; Wang Z.-F.; Tao H.-Y.; Dong X.-Q.; Wang C.-J. Chin. J. Chem. 2020, 38, 807. |
[39] | (s) He R.; Huo X.; Zhao L.; Wang F.; Jiang L.; Liao J.; Zhang W. J. Am. Chem. Soc. 2020, 142, 8097. |
[39] | (t) Wang Y.; Luo S. Chin. J. Org. Chem. 2020, 40, 2161. (in Chinese) |
[39] | ( 王娅宁, 罗三中, 有机化学, 2020, 40, 2161.) |
[39] | (u) Ju C.; Wu Z.; Li Y.; Zhang W. Chin. J. Org. Chem. 2020, 40, 3925. (in Chinese) |
[39] | ( 居辰阳, 吴正兴, 李云艺, 张万斌, 有机化学, 2020, 40, 3925.) |
[39] | (v) Li G.; Huo X.; Jiang X.; Zhang W. Chem. Soc. Rev. 2020, 49, 2060. |
[39] | (w) Ma X.; Yu J.; Wang Z.; Zhang Y.; Zhou Q. Chin. J. Org. Chem. 2020, 40, 2669. (in Chinese) |
[39] | ( 马献涛, 于静, 王子龙, 张赟, 周秋菊, 有机化学, 2020, 40, 2669.) |
[39] | (x) Tian F.; Zhang J.; Yang W.; Deng W. Chin. J. Org. Chem. 2020, 40, 3262. (in Chinese) |
[39] | ( 田飞, 张键, 杨武林, 邓卫平, 有机化学, 2020, 40, 3262.) |
[39] | (y) Huo X.; Zhao L.; Luo Y.; Wu Y.; Sun Y.; Li G.; Gridneva T.; Zhang J.; Ye Y.; Zhang W. CCS Chem. 2021, 3, 1933. |
[39] | (z) Xiao J.; Xu H.; Huo X.; Zhang W. Ma S. Chin. J. Chem. 2021, 39, 1958. |
[40] | Lee Y.; Akiyama K.; Gillingham D. G.; Brown M. K.; Hoveyda A. H. J. Am. Chem. Soc. 2008, 130, 446. |
[41] | Gao F.; Mcgrath K. P.; Lee Y.; Hoveyda A. H. J. Am. Chem. Soc. 2010, 132, 14315. |
[42] | Akiyama K.; Gao F.; Hoveyda A. H. Angew. Chem. Int. Ed. 2010, 49, 419. |
[43] | Gao F.; Carr J. L.; Hoveyda A. H. Angew. Chem. Int. Ed. 2012, 51, 6613. |
[44] | Gao F.; Carr J. L.; Hoveyda A. H. J. Am. Chem. Soc. 2014, 136, 2149. |
[45] | Trost B. M.; Hung C.-I.; Koester D. C.; Miller Y. Org. Lett. 2015, 17, 3778. |
[46] | Jin M.; Adak L.; Nakamura M. J. Am. Chem. Soc. 2015, 137, 7128. |
[47] | (a) Hatakeyama T.; Hashimoto T.; Kondo Y.; Fujiwara Y.; Seike H.; Takaya H.; Tamada Y.; Ono T.; Nakamura M. J. Am. Chem. Soc. 2010, 132, 10674. |
[47] | (b) Jin M.; Nakamura M. Chem. Lett. 2011, 40, 1012. |
[47] | (c) Hatakeyama T.; Fujiwara Y.; Okada Y.; Itoh T.; Hashimoto T.; Kawamura S.; Ogata K.; Takaya H.; Nakamura M. Chem. Lett. 2011, 40, 1030. |
[48] | (a) Adams C. J.; Bedford R. B.; Carter E.; Gower N. J.; Haddow M. F.; Harvey J. N.; Huwe M.; Cartes M. Á.; Mansell S. M.; Mendoza C.; Murphy D. M.; Neeve E. C.; Nunn J. J. Am. Chem. Soc. 2012, 134, 10333. |
[48] | (b) Bedford R. B.; Brenner P. B.; Carter E.; Clifton J.; Cogswell P. M.; Gower N. J.; Haddow M. F.; Harvey J. N.; Kehl J. A.; Murphy D. M.; Neeve E. C.; Neidig M. L.; Nunn J.; Snyder B. E. R.; Taylor J. Organometallics 2014, 33, 5767. |
[49] | Evans D. A.; Aye Y. J. Am. Chem. Soc. 2006, 128, 11034. |
/
〈 |
|
〉 |