综述

不对称Petasis反应在手性胺类化合物合成中的应用

  • 李翼 ,
  • 徐明华
展开
  • a 南方科技大学 化学系/深圳格拉布斯研究院 广东省催化化学重点实验室 深圳 518055
    b 中国科学院上海药物研究所 新药研究国家重点实验室 上海 201203

李翼, 2009年毕业于武汉大学, 获理学学士学位; 2014年毕业于中国科学院上海药物研究所, 获理学博士学位(导师: 徐明华研究员); 同年留所工作, 任助理研究员. 2016~2018年, 入选上海药明康德“青年人才计划”, 在国内新药研发部担任药物化学项目负责人, 主持创新药物研发项目, 全面负责小分子药物的临床前研究、开发及临床申报工作. 2018年至今, 在美国得克萨斯大学医学分部从事博士后研究. 主要研究兴趣包括不对称合成方法学, 以及针对肿瘤和糖尿病等重大疾病的创新药物研究.

徐明华, 南方科技大学化学系教授. 1999年博士毕业于中国科学院上海有机化学研究所, 先后在美国弗吉尼亚大学和乔治敦大学医学研究中心从事博士后研究; 曾任中国科学院上海药物研究所研究员、课题组长、博士生导师. 主要从事有机不对称合成及手性药物方面的研究, 致力于以一些重要有机分子及药物分子合成为导向的手性化学和手性技术探索, 发展高效不对称催化方法. 中国科学院“百人计划”、国家杰出青年科学基金获得者, 2016年获国家自然科学二等奖.

收稿日期: 2021-08-21

  网络出版日期: 2021-09-24

基金资助

项目受国家自然科学基金(21971103); 广东省催化化学重点实验室(2020B121201002)

Applications of Asymmetric Petasis Reaction in the Synthesis of Chiral Amines

  • Yi Li ,
  • Ming-Hua Xu
Expand
  • a Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
    b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

Received date: 2021-08-21

  Online published: 2021-09-24

Supported by

National Natural Science Foundation of China(21971103); Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)

摘要

手性胺类化合物广泛存在于天然产物、药物分子和多功能材料中, 而且作为重要中间体、催化剂和手性辅剂在有机合成中也有广泛的应用, 因此, 发展高效的方法合成各种手性胺化合物及相应的骨架结构具有重要的科学意义和应用价值. 有机硼试剂、胺和羰基化合物参与的不对称Petasis三组分反应是构建手性胺及其衍生物最简洁、高效的方法之一. 近年来, 利用该策略来构建手性胺类化合物引起了广泛的关注. 文章综述了不对称Petasis反应合成手性胺类化合物的近期研究进展, 主要包括手性胺源、手性羰基化合物和手性硼试剂参与的底物诱导的不对称Petasis反应, 以及手性催化剂促进的不对称Petasis反应, 并对该领域的挑战和未来发展方向进行简要讨论.

本文引用格式

李翼 , 徐明华 . 不对称Petasis反应在手性胺类化合物合成中的应用[J]. 化学学报, 2021 , 79(11) : 1345 -1359 . DOI: 10.6023/A21080391

Abstract

Chiral amines are valuable constituents of many natural products, pharmaceuticals and functional materials, they are also widely utilized as versatile building blocks and important chiral catalysts as well as chiral auxiliaries in organic synthesis. Therefore, it is of great scientific significance and application value to develop efficient methods for the synthesis of structurally diverse chiral amines and chiral amine scaffolds. In 1993, Petasis and co-workers reported an efficient synthesis of allylic amines through a Mannich-type reaction of vinylboronic acids with secondary amines and paraformaldehyde, where the organoboron reagents served as the nucleophilic component. Since then, this three-component Petasis reaction of organoboron reagents with amines and carbonyl derivatives has been developed as an appealing and concise method to access various amines. The asymmetric Petasis reaction provides a facile and efficient route to optically active amines and thus has attracted much attention over the past two decades. In this review, we summarize the recent progress achieved in the synthesis of chiral amines by asymmetric Petasis reaction and provide an overview on the methods applied for stereochemical control. The strategies that have been employed for accessing enantioenriched amines, including various chiral substrate-based diastereoselective induction approaches and several recent developments of enantioselective catalysis. In a large number of asymmetric Petasis reaction cases, good to high levels of stereoselectivities can be achieved relying on the utilization of chiral amine source, chiral carbonyl substrates, and chiral organoboron reagents. In particular, chiral amines such as α-methylbenzylamines and chiral α-hydroxy aldehyde analogues have emerged as a broadly applicable class of substrates for asymmetric Petasis reaction. The most promising advance has been the success of catalytic asymmetric Petasis reaction for enantioselective synthesis of chiral amines in the last few years. Chiral bifunctional thioureas and binaphthols have been demonstrated to be effective organocatalysts. Finally, the perspectives on the relevant challenges and future directions in this field are also discussed.

参考文献

[1]
(a) Kobayashi S.; Ishitani H. Chem. Rev. 1999, 99, 1069.
[1]
(b) Ellman J. A.; Owens T. D.; Tang T. P. Acc. Chem. Res. 2002, 35, 984.
[1]
(c) Blaser H.-U.; Malan C.; Pugin B.; Spindler F.; Steiner H.; Studer M. Adv. Synth. Catal. 2003, 345, 103.
[1]
(d) Ellman J. A. Pure Appl. Chem. 2003, 75, 39.
[1]
(e) Kukula P.; Prins R. Top. Catal. 2003, 25, 29.
[1]
(f) Morton D.; Stockman R. A. Tetrahedron 2006, 62, 8869.
[1]
(g) Ramachandran P. V.; Burghardt T. E. Pure Appl. Chem. 2006, 78, 1397.
[1]
(h) Skucas E.; Ngai M.-Y.; Komanduri V.; Krische M. J. Acc. Chem. Res. 2007, 40, 1394.
[1]
(i) Friestad G. K.; Mathies A. K. Tetrahedron 2007, 63, 2541.
[1]
(j) Kizirian J.-C. Chem. Rev. 2008, 108, 140.
[1]
(k) Chen D.; Xu M.-H. Chin. J. Org. Chem. 2017, 37, 1589. (in Chinese)
[1]
陈雕, 徐明华, 有机化学, 2017, 37, 1589.).
[1]
(l) Tang L.; Li X.; Xie F.; Zhang W. Chin. J. Org. Chem. 2020, 40, 575. (in Chinese)
[1]
唐亮, 李雪薇, 谢芳, 张万斌, 有机化学, 2020, 40, 575.).
[1]
(m) Sun Z.; Zhang C.; Chen L.; Xie H.; Liu B.; Liu D. Chin. J. Org. Chem. 2021, 41, 1789. (in Chinese)
[1]
孙忠文, 张聪聪, 陈丽君, 谢惠定, 柳波, 刘丹丹, 有机化学, 2021, 41, 1789.).
[1]
(n) Liu B.; Xu M.-H. Chin. Sci. Bull. 2021, 66, 3251. (in Chinese)
[1]
( 刘博, 徐明华, 科学通报, 2021, 66, 3251.)
[2]
(a) Mgller T. E.; Hultzsch K. C.; Yus M.; Foubelo F.; Tada M. Chem. Rev. 2008, 108, 3795.
[2]
(b) Nugent T. C.; El-Shazly M. Adv. Synth. Catal. 2010, 352, 753.
[2]
(c) Candeias N. R.; Montalbano F.; Cal P. M. S. D.; Gois P. M. P. Chem. Rev. 2010, 110, 6169.
[2]
(d) Wang C.; Villa-Marcos B.; Xiao J. Chem. Commun. 2011, 47, 9773.
[2]
(e) Xie J.-H.; Zhu S.-F., Zhou Q.-L. Chem. Soc. Rev. 2012, 41, 4126.
[2]
(f) Huang Y.-Y.; Cai C.; Yang X.; Lv Z.-C.; Schneider U. ACS Catal. 2016, 6, 5747.
[2]
(g) Wu P.; Givskov M.; Nielsen T. E. Chem. Rev. 2019, 119, 11245.
[3]
Petasis N. A.; Akritopoulou I. Tetrahedron Lett. 1993, 34, 583.
[4]
Hall D. Boronic Acid: Preparation and Applications in Organic Synthesis and Medicine, Wiley-VCH, Weinheim, Germany, 2005, pp. 279-304.
[5]
Yang X.; Cao Z.-H.; Zhou Y.; Cheng F.; Lin Z.-W.; Ou Z.; Yuan Y.; Huang Y.-Y. Org. Lett. 2018, 20, 2585.
[6]
(a) Zhu J.; Bienaymé H. Multicomponent Reactions, Wiley-VCH, Weineim, Germany, 2005, pp. 206-223.
[6]
(b) Kürti L.; Czakó B. Strategic Applications of Named Reactions in Organic Synthesis, Eds.: Hayhurst, J., Elsevier, London, 2005, p. 340.
[6]
(c) Yu T.; Li H.; Wu X.; Yang J. Chin. J. Org. Chem. 2012, 32, 1836. (in Chinese)
[6]
( 于涛, 李慧, 伍新燕, 杨军, 有机化学, 2012, 32, 1836.)
[7]
Petasis N. A.; Zavialov I. A. J. Am. Chem. Soc. 1997, 119, 445.
[8]
Petasis N. A.; Goodman A.; Zavialov I. A. Tetrahedron 1997, 53, 16463.
[9]
Southwood T. J.; Curry M. C.; Hutton C. A. Tetrahedron 2006, 62, 236.
[10]
Churches Q. I.; Stewart H. E.; Cohen S. B.; Shröder A.; Turner P.; Hutton C. A. Pure. Appl. Chem. 2008, 80, 687.
[11]
Churches Q. I.; Johnson J. K.; Fifer N. L.; Hutton C. A. Aust. J. Chem. 2011, 64, 62.
[12]
Jiang B.; Yang C.-G.; Gu X.-H. Tetrahedron Lett. 2001, 42, 2545.
[13]
Jiang B.; Xu M. Org. Lett. 2002, 4, 4077.
[14]
Shevchuk M. V.; Sorochinsky A. E.; Khilya V. P.; Romanenko V. D.; Kukhar V. P. Synlett 2010, 73.
[15]
Morozova V. A.; Beletskaya I. P.; Titanyuk I. D. Tetrahedron: Asymmetry 2017, 28, 349.
[16]
Tan Q.-Y.; Wang X.-Q.; Xiong Y.; Zhao Z.-M.; Lu L.; Tang P.; Zhang M. Angew. Chem., Int. Ed. 2017, 56, 4829.
[17]
Lin Z.-W.; Zhou Y.; Zhao Z.-N.; Zhao Y.; Liu J.; Huang Y.-Y. Org. Chem. Front. 2019, 6, 751.
[18]
Xie Y.-W.; Zhao Z.-N.; Lin Z.-W.; Wang Y.-H.; Liu Y.-Q.; Huang Y.-Y. Chem. Commun. 2021, 57, 2364.
[19]
Petasis N. A.; Patel Z. D. Tetrahedron Lett. 2000, 41, 9607.
[20]
Churches Q. I.; White J. M.; Hutton C. A. Org. Lett. 2011, 13, 2900.
[21]
Li Y.; Xu M.-H. Org. Lett. 2012, 14, 2062.
[22]
For related crystal structures and theoretical calculations: (a) Owens T. D.; Hollander F. J.; Oliver A. G.; Ellman J. A. J. Am. Chem. Soc. 2001, 123, 1539.
[22]
(b) Owens T. D.; Souers A. J.; Ellman J. A. J. Org. Chem. 2003, 68, 3.
[22]
(c) Schenkel L. B.; Ellman J. A. Org. Lett. 2003, 5, 545.
[22]
(d) Tietze L. F.; Schuffenhauer A. Eur. J. Org. Chem. 1998, 1629.
[22]
(e) Bharatam P. V.; Uppal P.; Kaur A.; Kaur D. J. Chem. Soc. Perkin Trans. 2, 2000, 43.
[23]
Bursavich M. G.; Harrison B. A.; Acharya R.; Costa D. E.; Freeman E. A.; Hodgdon H. E.; Hrdlicka L. A.; Jin H.; Kapadnis S.; Moffit J. S.; Murphy D. A.; Nolan S.; Patzke H.; Tang C.; Wen M.; Koenig G.; Blain J.-F.; BurnettOrcid D. A. J. Med. Chem. 2017, 60, 2383.
[24]
Wang J.; Xu B.; Si S.; Li H.; Song G. Mol. Divers. 2014, 18, 887.
[25]
Lenci E.; Rossi A.; Menchi G.; Trabocchi A. Org. Biomol. Chem. 2017, 15, 9710.
[26]
Kumagai N.; Muncipinto G.; Schreiber S.L. Angew. Chem., Int. Ed. 2006, 45, 3635.
[27]
Ascic E.; Quement S. T. L.; Ishoey M.; Daugaard M.; Nielsen T. E. ACS Comb. Sci. 2012, 14, 253.
[28]
Wu P.; Petersen M. Å.; Cohrt A. E.; Petersen R.; Clausen M. H.; Nielsen T. E. Eur. J. Org. Chem. 2015, 2346.
[29]
(a) Flagstad T.; Hansen M. R.; Le Quement S. T.; Givskov M.; Nielsen T. E. ACS Comb. Sci. 2015, 17, 19.
[29]
(b) Le Quement S. T.; Flagstad T.; Mikkelsen R. J. T.; Hansen M. R.; Givskov M. C.; Nielsen T. E. Org. Lett. 2012, 14, 640.
[30]
Jarvis S. B. D.; Charette A. B. Org. Lett. 2011, 13, 3830.
[31]
Mandai H.; Yamada H.; Shimowaki K.; Mitsudo K.; Suga S. Synthesis 2014, 46, 2672
[32]
Cannillo A.; Norsikian S.; Retailleau P.; Dau M.-E. T. H.; Iorga B. I.; Beau J.-M. Chem. Eur. J. 2013, 19, 9127.
[33]
Thaima T.; Pyne S. G. Org. Lett. 2015, 17, 778.
[34]
Liepouri F.; Bernasconi G.; Petasis N. A. Org. Lett. 2015, 17, 1628.
[35]
Flagstad T.; Petersen M. T.; Nielsen T. E. Angew. Chem., Int. Ed. 2015, 54, 8395.
[36]
Norsikian S.; Beretta M.; Cannillo A.; Martin A.; Retailleau P.; Beau J.-M. Chem. Commun. 2015, 51, 9991.
[37]
Norsikian S.; Beretta M.; Cannillo A.; Auvray M.; Martin A.; Retailleau P.; Iorga B. I.; Beau J.-M. Eur. J. Org. Chem. 2017, 1940.
[38]
Liew S. K.; He Z.; St. Denis, J. D.; Yudin, A. K. J. Org. Chem. 2013, 78, 11637.
[39]
Chevis P. J.; Wangngae S.; Thaima T.; Carroll A. W.; Willis A. C.; Pattarawarapan M.; Pyne S. G. Chem. Commun. 2019, 55, 6050.
[40]
Koolmeister T.; Södergren M.; Scobie M. Tetrahedron Lett. 2002, 43, 5969.
[41]
Hellou N.; Mace? A.; Martin C.; Dorcet V.; Roisnel T.; Jean M.; Vanthuyne N.; Berre?e F.; Carboni B.; Crassous J. J. Org. Chem. 2018, 83, 484.
[42]
Yamaoka Y.; Miyabe H.; Takemoto Y. J. Am. Chem. Soc. 2007, 129, 6686.
[43]
Inokuma T.; Suzuki Y.; Sakaeda T.; Takemoto Y. Chem. Asian J. 2011, 6, 2902.
[44]
Lou S.; Schaus S. E. J. Am. Chem. Soc. 2008, 130, 6922.
[45]
Muncipinto G.; Moquist P. N.; Schreiber S. L.; Schaus S. E. Angew. Chem., Int. Ed. 2011, 50, 8172.
[46]
Jiang Y.; Schaus S. E. Angew. Chem., Int. Ed. 2017, 56, 1544.
[47]
Han W.-Y.; Wu Z.-J.; Zhang X.-M.; Yuan W.-C. Org. Lett. 2012, 14, 976.
[48]
Han W.-Y.; Zuo J.; Zhang X.-M.; Yuan W.-C. Tetrahedron 2013, 69, 537.
[49]
Shi X.; Kiesman W. F.; Levina A.; Xin Z. J. Org. Chem. 2013, 78, 9415.
[50]
(a) Au C. W. G.; Nash R. J.; Pyne S. G. Chem. Commun. 2010, 46, 713.
[50]
(b) Ghosal P.; Shaw A. K. J. Org. Chem. 2012, 77, 7627.
[50]
(c) Bouillon M. E.; Pyne S. G. Tetrahedron Lett. 2014, 55, 475.
[50]
(d) Carroll A. W.; Savaspun K.; Willis A. C.; Hoshino M.; Kato A.; Pyne S. G. J. Org. Chem. 2018, 83, 5558.
[50]
(e) Ritthiwigrom T.; Au C. W. G.; Pyne S. G. Curr. Org. Synth. 2012, 9, 583.
[50]
(f) Miller K. E.; Wright A. J.; Olesen M. K.; Hovey M. T.; Scheerer J. R. J. Org. Chem. 2015, 80, 1569.
[50]
(g) Matthies S.; Stallforth P.; Seeberger P. H. J. Am. Chem. Soc. 2015, 137, 2848.
[50]
(h) Hassan M. I.; Lundgren B. R.; Chaumun M.; Whitfield D. M.; Clark B.; Schoenhofen I. C.; Boddy C. N. Angew. Chem., Int. Ed. 2016, 55, 12018.
[51]
Sim Y. E.; Nwajiobi O.; Mahesh S.; Cohen R. D.; Reibarkh M. Y.; Raj M. Chem. Sci. 2020, 11, 53.
文章导航

/