综述

有机共晶非线性光学材料及应用研究进展

  • 郝良朦 ,
  • 朱伟钢
展开
  • a 天津市分子光电科学重点实验室 天津大学理学院化学系 天津 300072
    b 电子科技大学电子薄膜与集成器件国家重点实验室 成都 610054

郝良朦, 1999年出生于山东菏泽, 2021年获山东师范大学化学化工与材料科学学院学士学位后, 考研至天津大学理学院化学系, 目前主要研究方向为制备有机共晶材料, 重点在非线性光学领域的应用研究.

朱伟钢, 天津大学英才副教授、特聘研究员、博士生导师, 2011年本科毕业于电子科技大学, 2016年博士毕业于中国科学院化学研究所, 2016~2019年在美国西北大学化学系开展博士后研究, 师从Tobin J. Marks教授, 2020年起在天津大学理学院化学系开展教学科研工作. 研究方向包括超快时间分辨光谱、电子顺磁共振、有机电子学器件、非线性光学和金属氧化物.

* E-mail: ; Tel.: 022-83613121

收稿日期: 2022-10-01

  网络出版日期: 2022-11-08

基金资助

电子薄膜与集成器件国家重点实验室开放课题(KFJJ202001)

Research Progress on Organic Cocrystals Nonlinear Optics Materials and Applications

  • Liangmeng Hao ,
  • Weigang Zhu
Expand
  • a Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072
    b State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054

Received date: 2022-10-01

  Online published: 2022-11-08

Supported by

Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices(KFJJ202001)

摘要

随着二次谐波(SHG)和双光子吸收(TPA)的产生, 有机非线性光学(NLO)材料近十年来在激光频率转换、生物成像、微纳加工、光限幅以及太赫兹波(THz)等领域发挥越来越重要的应用, 引起了广泛兴趣. 迄今为止, 报道的绝大多数有机非线性光学活性材料为单一组分, 它们化学合成繁琐、实验条件苛刻且难以打破单一组分固有属性的限制. 而复合材料可通过共混、掺杂、共结晶等简易形式迅速地拓宽新材料种类, 通过一种分子以上基于分子间非共价相互作用的有机共晶已在很大程度上朝着调节和修改分子固体的物理化学性质的方向发展. 然而, 目前国内外并没有关于有机共晶在非线性光学领域中的系统性总结与介绍. 本综述首先介绍二阶、三阶非线性光学性能参数及其测试方法; 接着, 介绍共晶材料在该领域的最新研究进展, 包括材料的种类、制备方法、产生光学非线性效应的机理等; 其次, 讨论共晶非线性光学材料潜在的应用; 最后, 对该领域的发展提供了一些展望, 希望能为有机共晶与非线性光学领域的同行研究者们提供一定的借鉴参考.

本文引用格式

郝良朦 , 朱伟钢 . 有机共晶非线性光学材料及应用研究进展[J]. 化学学报, 2023 , 81(2) : 191 -206 . DOI: 10.6023/A22100411

Abstract

With the appearance of second harmonic generation (SHG) and two-photon absorption (TPA), organic nonlinear optical (NLO) materials have played an increasingly important role in laser frequency conversion, biological imaging, micro- nano processing, optical limiting, terahertz wave (THz) and other fields in the past decades, arousing widespread interest. So far, most of the organic nonlinear optical active materials reported are single component which chemical synthesis is cumbersome, experimental conditions are rigorous and it is difficult to break the limit of the inherent properties of the single component. While organic composite material can rapidly broaden the variety of materials through simple forms such as blending, doping and cocrystallization, organic cocrystals based on intermolecular non-covalent interactions through more than one molecule have been developed to a large extent towards tuning and modifying the physicochemical properties of molecular solids. However, there is no systematic introduction of organic cocrystals in nonlinear optics at home and abroad. Firstly, the second-order and third-order nonlinear optical performance parameters and their testing methods are introduced; then, the latest research progress of molecular cocrystals materials in this field is introduced, including the types of materials, preparation methods, and the mechanism of optical nonlinearity effect; next, the possible applications of cocrystals nonlinear optical materials are discussed. Finally, some prospects for the development of this field are provided, and it is believed that this review can provide some reference for researchers in the field of organic cocrystals and nonlinear optics.

参考文献

[1]
Franken, P. A.; Hill, A. E.; Peters, C. W.; Weinreich, G. Phys. Rev. Lett. 1961, 7, 118.
[2]
Ashkin, A.; Boyd, G. D.; Dziedzic, J. M.; Smith, R. G.; Ballman, A. A.; Levinstein, J. J.; Nassau, K. Appl. Phys. Lett. 1966, 9, 72.
[3]
Gong, Y.-P.; Hu, C.-L.; Ma, Y.-X.; Mao, J.-G.; Kong, F. Inorg. Chem. Front. 2019, 6, 3133.
[4]
Liu, T.; Zhang, D.; Huqe, M. R.; Wang, W.; Zapien, J. A.; Tsang, S.-W.; Luo, J. Sci. China. Chem. 2021, 65, 584.
[5]
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics. 2010, 4, 611.
[6]
Ganeev, R. A. Nonlinear Optical Properties of Materials, Springer, London, 2012, p. xiv.
[7]
Shi, R.; Han, X.; Xu, J.; Bu, X.-H. Small. 2021, 17, e2006416.
[8]
Risk, W. P.; Lau, S. D. Appl. Phys. Lett. 1996, 69, 3999.
[9]
David, C. H. Opt. Lett. 1998, 23, 171.
[10]
Nash, F. R.; Bergman, J. G.; Boyd, G. D.; Turner, E. H. J. Appl. Phys. 1969, 40, 5201.
[11]
Chen, C. Sci. China Ser. B. 1984, 14, 598.
[12]
Wang, J.; Chen, C. J. Mater. Res. 2003, 18, 2479.
[13]
Tadashi, T.; Chen, C. Opt. Lett. 2003, 28, 254.
[14]
Lahav, M.; Kucharczyk, W. Cryst. Res. Technol. 1999, 34, 745.
[15]
Kenneth, H. IEEE J. Quantum Elect. 1968, 4, 243.
[16]
Liu, H.; Cheng, L. Appl. Optics. 1988, 27, 1006.
[17]
Hong, Y.; Zhang, H. Opt. Lett. 1993, 18, 772.
[18]
Shi, S.; Chen, G. Nonlinear Optics. Xidian University, Xi'an, 2012, p. 78.
[19]
Tang, R.-L.; Zhou, S.-M.; Cheng, Z.-Y.; Yu, G.; Peng, Q.; Zeng, H.- Y.; Li, Q.-Q.; Li, Z. Chem. Sci. 2017, 8, 340.
[20]
Li, Z.-A.; Chen, P.-Y.; Xie, Y.-J.; Li, Z.; Qin, J.- G. Adv. Electron. Mater. 2017, 3, 1700138.
[21]
Kong, L.; Zhong, M.; Shuang, W.; Xu, Y.; Bu, X.- H. Chem. Soc. Rev. 2020, 49, 2378.
[22]
Medishetty, R.; Zareba, J. K.; Mayer, D.; Samoc, M.; Fischer, R. A. Chem. Soc. Rev. 2017, 46, 4976.
[23]
Mingabudinova, L. R.; Vinogradov, V. V.; Milichko, V. A.; Hey-Hawkins, E.; Vinogradov, A. V. Chem. Soc. Rev. 2016, 45, 5408.
[24]
Xiong, J.; Qian, X.; Zhao, L.; Xu, J. Inorg. Chem. Commun. 2019, 105, 20.
[25]
Hafez, H. A.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T. J. Opt. 2016, 18, 4.
[26]
Sivakumar, T.; Anbarasan, R.; Kalyana Sundar, J.; Anna Lakshmi, M. J. Mater. Sci. Mater. Electron. 2020, 31, 12943.
[27]
Sivakumar, T.; Eniya, P.; Sundar, J. K.; Thirunavukkarasu, A.; Lakshmi, M. A.; Kanthimathi, G. Cryst. Res. Technol. 2021, 56, 2100016.
[28]
Xu, Y.; Wang, W.; Ge, Y.; Guo, H.; Zhang, X.; Chen, S.; Deng, Y.; Lu, Z.; Zhang, H. Adv. Funct. Mater. 2017, 27, 1702437.
[29]
Wang, S.; Shen, B.; Wei, H.-L.; Liu, Z.; Chen, Z.; Zhang, Y.; Su, Y.; Zhang, J.-Z.; Wang, H.; Su, Q. Nanoscale. 2019, 11, 10220.
[30]
Yan, D.; Yang, H.; Meng, Q.; Lin, H.; Wei, M. Adv. Funct. Mater. 2013, 24, 587.
[31]
Zhao, J.; Huang, W. Aerosp. Sci. Technol. 1998, 1, 16.
[32]
Jiang, M.; Zhen, C.; Li, S.; Zhang, X.; Hu, W. Front. Chem. 2021, 9, 764628.
[33]
Shi, S.; Chen, G. Nonlinear Optics. Xidian University, Xi'an, 2012, p. 3.
[34]
Zhu, W.-G.; Zhu, L.-Y.; Sun, L.-J.; Zhen, Y.-G.; Dong, H.-L.; Wei, Z.-X.; Hu, W.-P. Angew. Chem., Int. Ed. 2016, 55, 14023.
[35]
Sun, L.-J.; Zhu, W.-G.; Wang, W.; Yang, F.-X.; Zhang, C.-C.; Wang, S.-F.; Zhang, X.-T.; Li, R.-J.; Dong, H.-L.; Hu, W.-P. Angew. Chem., Int. Ed. 2017, 56, 7831.
[36]
Aitipamula, S.; Banerjee, R.; Bansal, A. K.; Biradha, K.; Cheney, M. L.; Choudhury, A. R.; Desiraju, G. R.; Dikundwar, A. G.; Dubey, R.; Duggirala, N.; Ghogale, P. P.; Ghosh, S.; Goswami, P. K.; Goud, N. R.; Jetti, R. R. K. R.; Karpinski, P.; Kaushik, P.; Kumar, D.; Kumar, V.; Moulton, B.; Mukherjee, A.; Mukherjee, G.; Myerson, A. S.; Puri, V.; Ramanan, A.; Rajamannar, T.; Reddy, C. M.; Rodriguez-Hornedo, N.; Rogers, R. D.; Row, T. N. G.; Sanphui, P.; Shan, N.; Shete, G.; Singh, A.; Sun, C. C.; Swift, J. A.; Thaimattam, R.; Thakur, T. S.; Kumar Thaper, R.; Thomas, S. P.; Tothadi, S.; Vangala, V. R.; Variankaval, N.; Vishweshwar, P.; Weyna, D. R.; Zaworotko, M. J. Cryst. Growth. Des. 2012, 12, 2147.
[37]
Yan, D.-P. Chem. Eur. J. 2015, 21, 4880.
[38]
Zhu, W.-G.; Wang, Y.-L.; Huang, C.-C.; Zhu, L.-Y.; Zhen, Y.-G.; Dong, H.-L.; Wei, Z.-X.; Guo, D.; Hu, W.-P. Sci. China Mater. 2020, 64, 169.
[39]
Zhou, B.; Zhao, Q.-H.; Tang, L.-C.; Yan, D.-P. Chem. Commun. 2020, 56, 7698.
[40]
Zhu, W.-G.; Yi, Y.-P.; Zhen, Y.-G.; Hu, W.-P. Small. 2015, 11, 2150.
[41]
Wang, Y.; Zhu, W.-G.; Du, W.-N.; Liu, X.-F.; Zhang, X.-T.; Dong, H.-L.; Hu, W.-P. Angew. Chem., Int. Ed. 2018, 57, 3963.
[42]
Wiscons, R. A.; Goud, N. R.; Damron, J. T.; Matzger, A. J. Angew. Chem., Int. Ed. 2018, 57, 9044.
[43]
Zhang, H.; Jiang, L.; Zhen, Y.; Zhang, J.; Han, G.; Zhang, X.; Fu, X.; Yi, Y.; Xu, W.; Dong, H.; Chen, W.; Hu, W.; Zhu, D. Adv. Electron. Mater. 2016, 2, 1500423.
[44]
Qin, Y.; Zhang, J.; Zheng, X.; Geng, H.; Zhao, G.; Xu, W.; Hu, W.; Shuai, Z.; Zhu, D. Adv. Mater. 2014, 26, 4093.
[45]
Zhu, W.-G.; Dong, H.-L.; Zhen, Y.-G.; Hu, W.-P. Sci. China Mater. 2015, 58, 854.
[46]
Wuest, J. D. Nat. Chem. 2012, 4, 74.
[47]
Sun, L.-J.; Zhu, W.-G.; Yang, F.-X.; Li, B.; Ren, X.; Zhang, X.-T.; Hu, W.-P. Phys. Chem. Chem. Phys. 2018, 20, 6009.
[48]
Shi, S.; Chen, G. Nonlinear Optics. Xidian University, Xi'an, 2012, p. 2.
[49]
Chen, W.; Zhang, F.; Wang, C.; Jia, M.; Zhao, X.; Liu, Z.; Ge, Y.; Zhang, Y.; Zhang, H. Adv. Mater. 2021, 33, e2004446.
[50]
Bosshard, C.; Kn?pfle, G.; Prêtre, P.; Günter, P. J. Appl. Phys. 1992, 71, 1594.
[51]
Zhan, C.; Wang, D. Acta Phys.-Chim. Sin. 1999, 15, 805. (in Chinese)
[51]
(詹传郎, 王夺元, 物理化学学报, 1999, 15, 805.)
[52]
Qian, Y.; Sun, Y.-M.; Liu, J.-Z. Acta Chim. Sinica. 1998, 56, 340. (in Chinese)
[52]
(钱鹰, 孙岳明, 刘举正, 化学学报, 1998, 56, 340.)
[53]
Clays, K.; Persoons, A. Phys. Rev. Lett. 1991, 66, 2980.
[54]
Meng, F.-Q.; Fang, C.-S.; Cui, Y.-P.; Wang, X. Acta Chim. Sinica. 2000, 58, 384. (in Chinese)
[54]
(孟凡青, 房昌水, 崔一平, 汪昕, 化学学报, 2000, 58, 384.)
[55]
Meredith, G.; David, J. Macromolecules. 1982, 15, 1385.
[56]
Shi, W. Solid State Commun. 2000, 113, 483.
[57]
Shi, W. Opt. Commun. 2000, 183, 299.
[58]
Won, D.-S.; Jung, W.-T.; Lee, J.-Y. Polym. Bull. 2009, 62, 433.
[59]
Muggli, D. J. Biomed. Mater. Res. 1999, 46, 271.
[60]
Li, Y.; Li, H. Chinese Journal of Lasers. 2009, 36, 2140. (in Chinese)
[60]
(李云, 李慧, 中国激光, 2009, 36, 2140.)
[61]
Charra, F.; Devaux, F.; Nunzi, J. M.; Raimond, P. Phys. Rev. Lett. 1992, 68, 2440.
[62]
Jia, Y.-J.; Guo, B.; Wang, G.-M. High Power Laser and Particle Beams. 2005, 17, 193. (in Chinese)
[62]
(贾亚杰, 郭斌, 王恭明, 强激光与粒子束, 2005, 17, 193.)
[63]
Koscien, E.; Sanetra, J.; Gondek, E.; Jarosz, B.; Kityk, I. V.; Ebothe, J.; Kityk, A. V. Spectrochim. Acta A Mol. Biomol. 2005, 61, 1933.
[64]
Wang, L.-T.; Cui, Y.-P. Optoelectronic Technology. 2007, 27, 231. (in Chinese)
[64]
(王良涛, 崔一平, 光电子技术, 2007, 27, 231.)
[65]
Sun, Y.-X.; Wang, W.-J. Journal of Jinggangshan University. 2011, 32, 33. (in Chinese)
[65]
(孙彦星, 王文军, 井冈山大学学报, 2011, 32, 33.)
[66]
Boterashvili, M.; Lahav, M.; Shankar, S.; Facchetti, A.; van der Boom, M. E. J. Am. Chem. Soc. 2014, 136, 11926.
[67]
Wang, Y.; Sun, L.-J.; Wang, C.; Yang, F.-X.; Ren, X.-C.; Zhang, X.-T.; Dong, H.-L.; Hu, W.-P. Chem. Soc. Rev. 2019, 48, 1492.
[68]
Erdelyi, M. Chem. Soc. Rev. 2012, 41, 3547.
[69]
Aaker?y, C. B.; Wijethunga, T. K.; Desper, J.; ?akovi?, M. Cryst. Growth. Des. 2016, 16, 2662.
[70]
Carletta, A.; Spinelli, F.; d'Agostino, S.; Ventura, B.; Chierotti, M. R.; Gobetto, R.; Wouters, J.; Grepioni, F. Chemistry. 2017, 23, 5317.
[71]
Riley, K. E.; Murray, J. S.; Fanfrlik, J.; Rezac, J.; Sola, R. J.; Concha, M. C.; Ramos, F. M.; Politzer, P. J. Mol. Model. 2011, 17, 3309.
[72]
Zhu, W.-G.; Zheng, R.-H.; Zhen, Y.-G.; Yu, Z.-Y.; Dong, H.-L.; Fu, H.-B.; Shi, Q.; Hu, W.-P. J. Am. Chem. Soc. 2015, 137, 11038.
[73]
Li, A.; Wang, J.; Liu, Y.; Xu, S.; Chu, N.; Geng, Y.; Li, B.; Xu, B.; Cui, H.; Xu, W. Phys. Chem. Chem. Phys. 2018, 20, 30297.
[74]
Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1619.
[75]
Fan, G.; Yang, X.; Liang, R.; Zhao, J.; Li, S.; Yan, D.-P. CrystEngComm. 2016, 18, 240.
[76]
Yan, D.-P.; Delori, A.; Lloyd, G. O.; Friscic, T.; Day, G. M.; Jones, W.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X. Angew. Chem., Int. Ed. 2011, 50, 12483.
[77]
Zhang, J.-R.; Yan, J.; Xing, X.-Y.; Zhao, G.-J. SmartMat. 2021, 2, 554.
[78]
Li, S.; Yan, D. Adv. Opt. Mater. 2018, 6, 1800445.
[79]
Li, S.; Lin, Y.; Yan, D.-P. J. Mater. Chem. C. 2016, 4, 2527.
[80]
Thakuria, R.; Nath, N. K.; Saha, B. K. Cryst. Growth Des. 2019, 19, 523.
[81]
Ostroverkhova, O. Chem Rev. 2016, 116, 13279.
[82]
Khan, A.; Wang, M.; Usman, R.; Sun, H.; Du, M.; Xu, C. Cryst. Growth Des. 2017, 17, 1251.
[83]
Harada, J.; Ohtani, M.; Takahashi, Y.; Inabe, T. J. Am. Chem. Soc. 2015, 137, 4477.
[84]
Wang, Y.; Zhu, W.-G.; Dong, H.-L.; Zhang, X.-T.; Li, R.; Hu, W.-P. Top. Curr. Chem. (Cham). 2016, 374, 83.
[85]
Park, S. K.; Cho, I.; Gierschner, J.; Kim, J. H.; Kim, J. H.; Kwon, J. E.; Kwon, O. K.; Whang, D. R.; Park, J. H.; An, B. K.; Park, S. Y. Angew. Chem., Int. Ed. 2016, 55, 203.
[86]
Zhou, Q.; Du, H.; Yu, Y.; Liu, C.; Li, J.; Ren, J.; Ji, Z.; Pang, Z. J. Phys. Chem. C. 2022, 126, 13381.
[87]
Beerepoot, M. T.; Friese, D. H.; Ruud, K. Phys. Chem. Chem. Phys. 2014, 16, 5958.
[88]
Gotoh, T.; Kondoh, T.; Egawa, K. J. Opt. Soc. Am. B. 2020, 6, 703.
[89]
Ji, Y.; Jones, C.; Baek, Y.; Park, G. K.; Kashiwagi, S.; Choi, H. S. Adv. Drug Deliv. Rev. 2020, 167, 121.
[90]
Jalani, G.; Naccache, R.; Rosenzweig, D. H.; Haglund, L.; Vetrone, F.; Cerruti, M. J. Am. Chem. Soc. 2016, 138, 1078.
[91]
Kim, H. M.; Cho, B. R. Chem. Rev. 2015, 115, 5014.
[92]
Sun, C.-L.; Li, J.; Wang, X.-Z.; Shen, R.; Liu, S.; Jiang, J.-Q.; Li, T.; Song, Q.-W.; Liao, Q.; Fu, H.-B.; Yao, J.-N.; Zhang, H.-L. Chem. 2019, 5, 600.
[93]
Shao, B.; Baroncini, M.; Qian, H.; Bussotti, L.; Di Donato, M.; Credi, A.; Aprahamian, I. J. Am. Chem. Soc. 2018, 140, 12323.
[94]
Wang, Y.; Wu, H.; Li, P.; Chen, S.; Jones, L. O.; Mosquera, M. A.; Zhang, L.; Cai, K.; Chen, H.; Chen, X. Y.; Stern, C. L.; Wasielewski, M. R.; Ratner, M. A.; Schatz, G. C.; Stoddart, J. F. Nat. Commun. 2020, 11, 4633.
[95]
Matsukawa, T.; Mineno, Y.; Odani, T.; Okada, S.; Taniuchi, T.; Nakanishi, H. J. Cryst. Growth. 2007, 299, 344.
[96]
Wang, Y.; Zhang, X.; Zhang, X.; Zhou, T.; Cui, Z.; Zhang, K. J. Mater. Chem. A. 2022, 10, 1780.
[97]
Kim, S. J.; Kang, B. J.; Puc, U.; Kim, W. T.; Jazbinsek, M.; Rotermund, F.; Kwon, O. P. Adv. Opt. Mater. 2021, 9, 2101019.
[98]
Shin, M. H.; Lee, S. H.; Kang, B. J.; Jazbin?ek, M.; Yoon, W.; Yun, H.; Rotermund, F.; Kwon, O. P. Adv. Funct. Mater. 2018, 28, 1805257.
[99]
Kobayashi, H. Chem. Rev. 2010, 110, 2620.
[100]
Watt, W. W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7075.
[101]
Helmchen, F.; Denk, W. Nat. Methods. 2005, 2, 932.
[102]
Kim, H. M.; An, M. J.; Hong, J. H.; Jeong, B. H.; Kwon, O.; Hyon, J.-Y.; Hong, S.-C.; Lee, K. J.; Cho, B. R. Angew. Chem., Int. Ed. 2008, 47, 2231.
[103]
Yang, W.; Chan, P. S.; Chan, M. S.; Li, K. F.; Lo, P. K.; Mak, N. K.; Cheah, K. W.; Wong, M. S. Chem. Commun. (Camb). 2013, 49, 3428.
[104]
Kim, M. K.; Lim, C. S.; Hong, J. T.; Han, J. H.; Jang, H. Y.; Kim, H. M.; Cho, B. R. Angew. Chem., Int. Ed. 2010, 49, 364.
[105]
Charier, S.; Ruel, O.; Baudin, J. B.; Alcor, D.; Allemand, J. F.; Meglio, A.; Jullien, L. Angew. Chem., Int. Ed. 2004, 43, 4785.
[106]
Tian, Y. S.; Lee, H. Y.; Lim, C. S.; Park, J.; Kim, H. M.; Shin, Y. N.; Kim, E. S.; Jeon, H. J.; Park, S. B.; Cho, B. R. Angew. Chem., Int. Ed. 2009, 48, 8027.
[107]
Feng, X.; Wang, M. Org. Lett. 2010, 12, 2194.
[108]
Kang, D. E.; Lim, C. S.; Kim, J. Y.; Kim, E. S.; Chun, H. J.; Cho, B. R. Anal. Chem. 2014, 86, 5353.
[109]
Park, H. J.; Lim, C. S.; Kim, E. S.; Han, J. H.; Lee, T. H.; Chun, H. J.; Cho, B. R. Angew. Chem., Int. Ed. 2012, 51, 2673.
[110]
Ouyang, X.; Zeng, H.; Ji, W. J. Phys. Chem. B. 2009, 113, 14565.
[111]
Albota, M.; Beljonne, D.; Bredas, J.-L. Science. 1998, 281, 1653.
[112]
Su, X.; Guang, S.; Li, C.; Xu, H.; Liu, X.; Wang, X.; Song, Y. Macromolecules. 2010, 43, 2840.
[113]
Pang, X.; Tao, Y.-L.; Zhang, J.-F.; Ren, G.-J. J. Mol. Struct. 2023, 1271, 134079.
[114]
Yan, Z.; Guang, S.; Xu, H.; Liu, X.-Y. Dyes Pigments. 2013, 99, 720.
[115]
Hou, X.; Sun, J.; Liu, Z.; Yan, C.; Song, W.; Zhang, H. L.; Zhou, S.; Shao, X. Chem. Commun. (Camb). 2018, 54, 10981.
[116]
Naoto, S.; Atsushi, H. Chem. Mater. 2005, 17, 20.
文章导航

/