水系锌离子电池负极集流体关键问题及设计策略
收稿日期: 2022-10-08
网络出版日期: 2022-12-01
基金资助
湖南省科技计划项目(2022RC3050); 湖南省科技计划项目(2017TP1001); 湖南省研究生科研创新项目(CX20220159); 中南大学中央高校基本科研业务费专项资金(2022ZZTS0071); 河南师范大学化学化工学院开放科研基金资助
Anode Current Collector for Aqueous Zinc-ion Batteries: Issues and Design Strategies
Received date: 2022-10-08
Online published: 2022-12-01
Supported by
Science and technology innovation Program of Hunan Province(2022RC3050); Science and technology innovation Program of Hunan Province(2017TP1001); Hunan Provincial Innovation Foundation For Postgraduate(CX20220159); Fundamental Research Funds for the Central Universities of Central South University(2022ZZTS0071); Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University
水系锌离子电池具有成本低廉、环境友好、安全、能量密度较高等特点, 有望应用于大规模电化学储能装置. 然而, 目前使用的商业化锌箔负极相对正极活性材料大大过量, 显著降低了电池的能量密度, 且存在严重的穿孔和极耳脱落等问题. 使用集流体负载锌作为负极可有效提高放电深度, 同时避免电极穿孔失效. 但是, 集流体界面易产生锌枝晶与副反应, 严重影响电池的循环寿命. 本综述首先分析了锌枝晶与副反应的产生原因及其对锌负极电化学性能的影响, 并从集流体材料成分选择与结构构建两方面总结了锌负极集流体的设计思路, 包括选择亲锌性材料、设计择优取向基底与构建三维集流体结构. 设计合适的集流体可有效调控锌金属的沉积与剥离行为, 从而推进水系锌离子电池的实用化.
姬慧敏 , 谢春霖 , 张旗 , 李熠鑫 , 李欢欢 , 王海燕 . 水系锌离子电池负极集流体关键问题及设计策略[J]. 化学学报, 2023 , 81(1) : 29 -41 . DOI: 10.6023/A22100413
Aqueous zinc ion batteries possess the characteristics of cost-effectiveness, environmental benignancy, intrinsic safety, and relatively high energy density, and are promising to be used in large-scale electrochemical energy storage devices. However, the current commercial zinc foil anode is considerably excessive compared with cathode active materials, which significantly decreases the energy density of the battery. And there are serious problems of anode perforation, tab falling off and so on. Loading zinc on current collector as anode is effective to improve depth of discharge and avoid the electrode perforation. Nevertheless, the zinc dendrites and side reactions are prone to generate at the current collector interface, and they seriously affect the cycle life of the battery. In this review, the causes of zinc dendrites and side reactions and their influence on the electrochemical performance of zinc anode are analyzed, and the design ideas of the zinc anode current collectors are summarized from two aspects of composition selection and structure construction, including the selection of zincophilic materials, the design of preferred-orientation substrates and the construction of three-dimensional current collector structures. Designing an appropriate current collector can effectively regulate the plating and stripping behavior of zinc metal and promote the practical application of aqueous zinc ion batteries.
[1] | Zuo, S.-Y.; Xu, X.-J.; Ji, S.-M.; Wang, Z.-S.; Liu, Z.-B.; Liu, J. Chem. - Eur. J. 2021, 27, 830. |
[2] | Zhang, Q.; Luan, J.-Y.; Huang, X.-B.; Wang, Q.; Sun, D.; Tang, Y.-G.; Ji, X.-B.; Wang, H.-Y. Nat. Commun. 2020, 11, 3961. |
[3] | Feng, Y.; Cao, C.-Y.; Zeng, J.; Wang, R.-C.; Peng, C.-Q.; Wang, X.-F. Trans. Nonferrous Met. Soc. China 2022, 32, 1253. |
[4] | Ren, G.-X.; Liao, C.-B.; Liu, Z.-H.; Xiao, S.-W. Trans. Nonferrous Met. Soc. China 2022, 32, 2746. |
[5] | Wang, J.; Li, Y.-S.; Liu, P.; Wang, F.; Yao, Q.-R.; Zou, Y.-J.; Zhou, H.-Y.; Balogun, M. S.; Deng, J.-Q. J. Cent. South Univ. 2021, 28, 361. |
[6] | He, W.-X.; Gu, T.-T.; Xu, X.-J.; Zuo, S.-Y.; Shen, J.-D.; Liu, J.; Zhu, M. ACS Appl. Mater. Interfaces 2022, 14, 40031. |
[7] | Zhang, Q.; Luan, J.-Y.; Tang, Y.-G.; Ji, X.-B.; Wang, H.-Y. Angew. Chem., Int. Ed. 2020, 59, 13180. |
[8] | Yi, Z.-H.; Chen, G.-Y.; Hou, F.; Wang, L.-Q.; Liang, J. Adv. Energy Mater. 2021, 11, 2003065. |
[9] | Yang, Z.-F.; Zhang, Q.; Xie, C.-L.; Li, Y.-H.; Li, W.-B.; Wu, T.-Q.; Tang, Y.-G.; Wang, H.-Y. Energy Stor. Mater. 2022, 47, 319. |
[10] | Blanc, L. E.; Kundu, D.; Nazar, L. F. Joule 2020, 4, 771. |
[11] | Zhang, X.-X.; Liu, R.; Wang, L.; Fu, H.-G. Acta Chim. Sinica 2021, 79, 671. (in Chinese) |
[11] | ( 张欣欣, 刘荣, 王磊, 付宏刚, 化学学报, 2021, 79, 671.) |
[12] | Li, Y.-L.; Yu, D.-D.; Lin, S.; Sun, D.-F.; Lei, Z.-Q. Acta Chim. Sinica 2021, 79, 200. (in Chinese) |
[12] | ( 李燕丽, 于丹丹, 林森, 孙东飞, 雷自强, 化学学报, 2021, 79, 200.) |
[13] | Zuo, S.-Y.; Liu, J.; He, W.-X.; Osman, S.; Liu, Z.-B.; Xu, X.-J.; Shen, J.-D.; Jiang, W.; Liu, J.-W.; Zeng, Z.-Y. J. Phys. Chem. Lett. 2021, 12, 7076. |
[14] | Du, M.; Miao, Z.-Y.; Li, H.-Z.; Sang, Y.-H.; Liu, H.; Wang, S.-H. J. Mater. Chem. A 2021, 9, 19245. |
[15] | Du, W.-C.; Huang, S.; Zhang, Y.-F.; Ye, M.-H.; Li, C.-C. Energy Stor. Mater. 2022, 45, 465. |
[16] | Xu, Z.-X.; Jin, S.; Zhang, N.-J.; Deng, W.-J.; Seo, M.-H.; Wang, X.-L. Nano Lett. 2022, 22, 1350. |
[17] | Zhu, Y.-P.; Cui, Y.; Alshareef, H. N. Nano Lett. 2021, 21, 1446. |
[18] | Zhang, Q.; Luan, J.-Y.; Fu, L.; Wu, S.-G.; Tang, Y.-G.; Ji, X.-B.; Wang, H.-Y. Angew. Chem., Int. Ed. 2019, 58, 15841. |
[19] | Zhou, J.-H.; Wu, F.; Mei, Y.; Hao, Y.-T.; Li, L.; Xie, M.; Chen, R.-J. Adv. Mater. 2022, 34, 2200782. |
[20] | Li, Q.; Wang, Y.-B.; Mo, F.-N.; Wang, D.-H.; Liang, G.-J.; Zhao, Y.-W.; Yang, Q.; Huang, Z.-D.; Zhi, C.-Y. Adv. Energy Mater. 2021, 11, 2003931. |
[21] | Li, X.-L.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z.-D.; Liang, G.-J.; Zhao, Y.-W.; Ma, L.-T.; Li, M.; Huang, Q.; Zhi, C.-Y. ACS Nano 2021, 15, 14631. |
[22] | Yang, Y.; Yuan, W.; Zhang, X.-Q.; Ke, Y.-Z.; Qiu, Z.-Q.; Luo, J.; Tang, Y.; Wang, C.; Yuan, Y.-H.; Huang, Y. Appl. Energy 2020, 276, 115464. |
[23] | Xie, C.-L.; Li, Y.-H.; Wang, Q.; Sun, D.; Tang, Y.-G.; Wang, H.-Y. Carbon Energy 2020, 2, 540. |
[24] | Du, W.-C.; Ang, E. H.-X.; Yang, Y.; Zhang, Y.-F.; Ye, M.-H.; Li, C.-C. Energy Environ. Sci. 2020, 13, 3330. |
[25] | He, W.-X.; Zuo, S.-Y.; Xu, X.-J.; Zeng, L.-Y.; Liu, L.; Zhao, W.-M.; Liu, J. Mater. Chem. Front. 2021, 5, 2201. |
[26] | Yan, Z.; Wang, E.-D.; Jiang, L.-H.; Sun, G.-Q. RSC Adv. 2015, 5, 83781. |
[27] | Shi, X.-D.; Xu, G.-F.; Liang, S.-Q.; Li, C.-P.; Guo, S.; Xie, X.-S.; Ma, X.-M.; Zhou, J. ACS Sustainable Chem. Eng. 2019, 7, 17737. |
[28] | Zhao, Q.-W.; Liu, W.; Chen, Y.-J.; Chen, L.-B. Chem. Eng. J. 2022, 450, 137979. |
[29] | Tang, B.; Fan, H.-F.; Liu, Q.-F.; Zhang, Q.; Liu, M.; Wang, E.-D. Int. J. Energy Res. 2022, 46, 18562. |
[30] | Fan, X.-Y.; Yang, H.; Wang, X.-X.; Han, J.-X.; Wu, Y.; Gou, L.; Li, D.-L.; Ding, Y.-L. Adv. Mater. Interfaces 2021, 8, 2002184. |
[31] | Wang, L.-Y.; Huang, W.-W.; Guo, W.-B.; Guo, Z.-H.; Chang, C.-Y.; Gao, L.; Pu, X. Adv. Funct. Mater. 2022, 32, 2108533. |
[32] | Jian, Q.-P.; Guo, Z.-X.; Zhang, L.-C.; Wu, M.-C.; Zhao, T.-S. Chem. Eng. J. 2021, 425, 130643. |
[33] | Wang, R.; Xin, S.; Chao, D.-L.; Liu, Z.-X.; Wan, J.-D.; Xiong, P.; Luo, Q.-Q.; Hua, K.; Hao, J.-N.; Zhang, C.-F. Adv. Funct. Mater. 2022, 32, 2207751. |
[34] | Wang, T.-T.; Li, C.-P.; Xie, X.-S.; Lu, B.-G.; He, Z.-X.; Liang, S.-Q.; Zhou, J. ACS Nano 2021, 14, 16321. |
[35] | Zhou, J.; Shan, L.-T.; Tang, B.-Y.; Liang, S.-Q. Chin. Sci. Bull. 2020, 65, 3562. (in Chinese) |
[35] | ( 周江, 单路通, 唐博雅, 梁叔全, 科学通报, 2020, 65, 3562.) |
[36] | Lu, W.-J.; Zhang, C.-K.; Zhang, H.-M.; Li, X.-F. ACS Energy Lett. 2021, 6, 2765. |
[37] | Xie, F.-X.; Li, H.; Wang, X.-S.; Zhi, X.; Chao, D.-L.; Davey, K.; Qiao, S.-Z. Adv. Energy Mater. 2021, 11, 2003419. |
[38] | Huang, Y.; Ip, W.-S.; Lau, Y.-Y.; Sun, J.-F.; Zeng, J.; Yeung, N.-S.-S.; Ng, W.-S.; Li, H.-F.; Pei, Z.-X.; Xue, Q. ACS Nano 2017, 11, 8953. |
[39] | Li, S.-Y.; Fu, J.; Miao, G.-X.; Wang, S.-P.; Zhao, W.-Y.; Wu, Z.-C.; Zhang, Y.-J.; Yang, X.-W. Adv. Mater. 2021, 33, 2008424. |
[40] | Yin, Y.-B.; Wang, S.-N.; Zhang, Q.; Song, Y.; Chang, N.-N.; Pan, Y.-W.; Zhang, H.-M.; Li, X.-F. Adv. Mater. 2020, 32, 1906803. |
[41] | Miao, Z.-Y.; Du, M.; Li, H.-Z.; Zhang, F.; Jiang, H.-C.; Sang, Y.-H.; Li, Q.-F.; Liu, H.; Wang, S.-H. EcoMat 2021, 3, e12125. |
[42] | Cui, M.-W.; Xiao, Y.; Kang, L.-T.; Du, W.; Gao, Y.-F.; Sun, X.-Q.; Zhou, Y.-L.; Li, X.-M.; Li, H.-F.; Jiang, F.-Y.; Zhi, C.-Y. ACS Appl. Energy Mater. 2019, 2, 6490. |
[43] | Han, D.-L.; Wu, S.-C.; Zhang, S.-W.; Deng, Y.-Q.; Cui, C.-J.; Zhang, L.-A.; Long, Y.; Li, H.; Tao, Y.; Weng, Z.; Yang, Q.-H.; Kang, F.-Y. Small 2020, 16, 2001736. |
[44] | Tian, Y.; An, Y.-L.; Liu, C.-K.; Xiong, S.-L.; Feng, J.-K.; Qian, Y.-T. Energy Stor. Mater. 2021, 41, 343. |
[45] | Hong, L.; Wang, L.-Y.; Wang, Y.-L.; Wu, X.-M.; Huang, W.; Zhou, Y.-F.; Wang, K.-X.; Chen, J.-S. Adv. Sci. 2022, 9, 2104866. |
[46] | Zhang, Y.-J.; Wang, G.-Y.; Yu, F.-F.; Xu, G.; Li, Z.; Zhu, M.; Yue, Z.-J.; Wu, M.-H.; Liu, H.-K.; Dou, S.-X.; Wu, C. Chem. Eng. J. 2021, 416, 128062. |
[47] | Zhao, Q.-W.; Wang, Y.-Y.; Liu, W.; Liu, X.-Y.; Wang, H.; Yu, H.-M.; Chen, Y.-J.; Chen, L.-B. Adv. Mater. Interfaces 2022, 9, 2102254. |
[48] | Lu, Q.-Q.; Liu, C.-C.; Du, Y.-H.; Wang, X.-Y.; Ding, L.; Omar, A.; Mikhailova, D. ACS Appl. Mater. Interfaces 2021, 13, 16869. |
[49] | Zhang, Y.-M.; Howe, J. D.; Ben-Yosephen, S.; Wu, Y.-T.; Liu, N. ACS Energy Lett. 2021, 6, 404. |
[50] | Chen, T.; Wang, Y.-A.; Yang, Y.; Huang, F.; Zhu, M.-K.; Ang, B. T. W.; Xue, J.-M. Adv. Funct. Mater. 2021, 31, 2101607. |
[51] | Zeng, L.; He, H.-N.; Chen, H.-Y.; Luo, D.; He, J.; Zhang, C.-H. Adv. Energy Mater. 2022, 12, 2103708. |
[52] | Guan, Q.; Li, Y.-P.; Bi, X.-X.; Yang, J.; Zhou, J.-W.; Li, X.-L.; Cheng, J.-L.; Wang, Z.-P.; Wang, B.; Lu, J. Adv. Energy Mater. 2019, 9, 1901434. |
[53] | Cao, Q.-H.; Gao, H.; Gao, Y.; Yang, J.; Li, C.; Pu, J.; Du, J.-J.; Yang, J.-Y.; Cai, D.-M.; Pan, Z.-H.; Guan, C.; Huang, W. Adv. Funct. Mater. 2021, 31, 2103922. |
[54] | Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H.-Y.; Zhang, J.-T. Electrochim. Acta 2019, 296, 755. |
[55] | Wang, L.-P.; Li, N.-W.; Wang, T.-S.; Yin, Y.-X.; Guo, Y.-G.; Wang, C.-R. Electrochim. Acta 2017, 244, 172. |
[56] | Zhong, Y.; Zhou, S.; He, Q.; Pan, A.-Q. Energy Stor. Mater. 2021, 45, 48. |
[57] | Wang, T.; Sun, J.-M.; Hua, Y.-B.; Krishna, B.-N.-V.; Xi, Q.; Ai, W.; Yu, J.-S. Energy Stor. Mater. 2022, 53, 273. |
[58] | Du, W.-C.; Huang, S.; Zhang, Y.-F.; Ye, M.-H.; Li, C.-C. Energy Stor. Mater. 2022, 45, 465. |
[59] | Zhao, Z.-D.; Wang, R.; Peng, C.-X.; Chen, W.-J.; Wu, T.-Q.; Hu, B.; Weng, W.-J.; Yao, Y.; Zeng, J.-X.; Chen, Z.-H.; Liu, P.-Y.; Liu, Y.-C.; Li, G.-S.; Guo, J.; Lu, H.-B.; Guo, Z.-P. Nat. Commun. 2021, 12, 6606. |
[60] | Cao, J.; Zhang, D.-D.; Gu, C.; Wang, X.; Wang, S.-M.; Zhang, X.-Y.; Qin, J.-Q.; Wu, Z.-S. Adv. Energy Mater. 2021, 11, 2101299. |
[61] | Foroozan, T.; Yurkiv, V.; Sharifi-Asl, S.; Rojaee, R.; Mashayek, F.; Shahbazian-Yassar, R. ACS Appl. Mater. Interfaces 2019, 11, 44077. |
[62] | Zhou, M.; Guo, S.; Li, J.-L.; Luo, X.-B.; Liu, Z.-X.; Zhang, T.-S.; Cao, X.-X.; Long, M.-Q.; Lu, B.-G.; Pan, A.-Q.; Fang, G.-Z.; Zhou, J.; Liang, S.-Q. Adv. Mater. 2021, 33, 2100187. |
[63] | Zheng, J.-X.; Archer, L. A. Sci. Adv. 2021, 7, eabe0219. |
[64] | Zheng, J.-X.; Zhao, Q.; Tang, T.; Yin, J.-F.; Quilty, C. D.; Renderos, G. D.; Liu, X.-T.; Deng, Y.; Wang, L.; Bock, D. C.; Jaye, C.; Zhang, D.-H.; Takeuchi, E. S.; Takeuchi, K. J.; Marschilok, A. C.; Archer, L. A. Science 2019, 366, 645. |
[65] | Tian, Y.; An, Y.-L.; Wei, C.-L.; Xi, B.-J.; Xiong, S.-L.; Feng, J.-K.; Qian, Y.-T. ACS Nano 2019, 13, 11676. |
[66] | Ishikawa, K.; Ito, Y.; Harada, S.; Tagawa, M.; Ujihara, T. Cryst. Growth Des. 2017, 17, 2379. |
[67] | Kim, Y.-J.; Kwon, S.-H.; Noh, H.; Yuk, S.; Lee, H.; Jin, H.-S.; Lee, J.; Zhang, J.-G.; Lee, S.-G.; Guim, H.; Kim, H.-T. Energy Stor. Mater. 2019, 19, 154. |
[68] | Gu, Y.; Xu, H.-Y.; Zhang, X.-G.; Wang, W.-W.; He, J.-W.; Tang, S.; Yan, J.-W.; Wu, D.-Y.; Zheng, M.-S.; Dong, Q.-F.; Mao, B.-W. Angew. Chem., Int. Ed. 2019, 58, 3092. |
[69] | Qian, J.; Wang, S.; Li, Y.; Zhang, M.-L.; Wang, F.-J.; Zhao, Y.-Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R.-J. Adv. Funct. Mater. 2020, 31, 2006950. |
[70] | Xie, C.-L.; Yang, Z.-F.; Zhang, Q.; Ji, H.-M.; Li, Y.-H.; Wu, T.-Q.; Li, W.-B.; Wu, P.-F.; Wang, H.-Y. Research 2022, 2022, 9841343. |
[71] | Yan, Y.; Shu, C.-Z.; Zeng, T.; Wen, X.-J.; Liu, S.; Deng, D.-H.; Zeng, Y. ACS Nano 2022, 12, 9150. |
[72] | Yang, Q.; Bang, G.-J.; Guo, Y.; Liu, Z.-X.; Yon, B.-X.; Wang, D.-H.; Huang, Z.-D.; Li, X.-L.; Fan, J.; Zhi, C.-Y. Adv. Mater. 2019, 31, 1903778. |
[73] | Wang, X.-W.; Wang, F.-X.; Wang, L.-Y.; Li, M.-X.; Wang, Y.-F.; Chen, B.-W.; Zhu, Y.-S.; Fu, L.-J.; Zha, L.-S.; Zhang, L.-X.; Wu, Y.-P.; Huang, W. Adv. Mater. 2016, 28, 4904. |
[74] | Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Nat. Commun. 2015, 6, 8058. |
[75] | Li, T.; Gu, S.-C.; Lin, Q.-W.; Han, J.-W.; Zhou, G.-M.; Li, B.-H.; Kang, F.-Y.; Lyu, W. Chem. J. Chinese Universities 2021, 42, 1480. (in Chinese) |
[75] | ( 李曈, 谷思辰, 林乔伟, 韩俊伟, 周光敏, 李宝华, 康飞宇, 吕伟, 高等学校化学学报, 2021, 42, 1480.) |
[76] | Zhao, J.; Ren, H.; Liang, Q.-H.; Yuan, D.; Xi, S.-B.; Wu, C.; Manalastas, W.; Ma, J.-M.; Fang, W.; Zheng, Y.; Du, C.-F.; Srinivasan, M.; Yan, Q.-Y. Nano Energy 2019, 62, 94. |
[77] | Dong, W.; Shi, J.-L.; Wang, T.-S.; Yin, Y.-X.; Wang, C.-R.; Guo, Y.-G. RSC Adv. 2018, 8, 19157. |
[78] | Xue, P.; Guo, C.; Wang, N.-Y.; Zhu, K.-P.; Jing, S.-A.; Kong, S.; Zhang, X.-J.; Li, L.; Li, H.-P.; Feng, Y.-B.; Gong, W.-B.; Li, Q.-L. Adv. Funct. Mater. 2021, 31, 2106417. |
[79] | Zhang, Q.; Luan, J.-Y.; Huang, X.-B.; Zhu, L.; Tang, Y.-G.; Ji, X.-B.; Wang, H.-Y. Small 2020, 16, 2000929. |
[80] | Zeng, Y.-X.; Zhang, X.-Y.; Qin, R.-F.; Liu, X.-Q.; Fang, P.-P.; Zheng, D.-Z.; Tong, Y.-X.; Lu, X.-H. Adv. Mater. 2019, 31, 1903675. |
[81] | An, Y.-L.; Tian, Y.; Li, Y.; Wei, C.-L.; Tao, Y.; Liu, Y.-P.; Xi, B.-J.; Xiong, S.-L.; Feng, J.-K.; Qian, Y.-T. Chem. Eng. J. 2020, 400, 125843. |
[82] | Bayaguud, A.; Luo, X.; Fu, Y.-P.; Zhu, C.-B. ACS Energy Lett. 2020, 5, 3012. |
[83] | Li, C.-P.; Shi, X.-D.; Liang, S.-Q.; Ma, X.-M.; Han, M.-M.; Wu, X.-W.; Zhou, J. Chem. Eng. J. 2020, 379, 122248. |
[84] | Xue, P.; Guo, C.; Li, L.; Li, H.-P.; Luo, D.; Tan, L.-C.; Chen, Z.-W. Adv. Mater. 2022, 34, 2110047. |
[85] | Kang, Z.; Wu, C.-L.; Dong, L.-B.; Liu, W.-B.; Mou, J.; Zhang, J.-W.; Chang, Z.-W.; Jiang, B.-Z.; Wang, G.-X.; Kang, F.-Y.; Xu, C.-J. ACS Sustainable Chem. Eng. 2019, 7, 3364. |
[86] | Liu, B.-T.; Wang, S.-J.; Wang, Z.-L.; Lei, H.; Chen, Z.-T.; Mai, W.-J. Small 2020, 16, 2001323. |
[87] | Wang, Z.; Huang, J.-H.; Guo, Z.-W.; Dong, X.-L.; Liu, Y.; Wang, Y.-G.; Xia, Y.-Y. Joule 2019, 3, 1289. |
/
〈 |
|
〉 |