收稿日期: 2022-10-31
网络出版日期: 2022-12-05
基金资助
国家重点研发计划(2021YFB3200400); 国家自然科学基金(21825601); 国家自然科学基金(21790374); 国家博士后创新人才支持计划(BX20220223); 中国博士后科学基金(2022M710103); 江苏省卓越博士后计划(2022ZB588)
Research Progress of Synthesis Methods for Crystalline Porous Materials
Received date: 2022-10-31
Online published: 2022-12-05
Supported by
National Key Research and Development Program of China(2021YFB3200400); National Natural Science Foundation of China(21825601); the National Natural Science Foundation of China(21790374); fellowship of China National Postdoctoral Program for Innovative Talents(BX20220223); fellowship of China Postdoctoral Science Foundation(2022M710103); Jiangsu Postdoctoral Program for Excellence(2022ZB588)
晶态多孔材料是一类具有高孔隙率、多样结构、可控功能的功能材料, 在客体分子吸附及分离、催化、储能等众多领域具有广阔的应用前景. 其中, 以沸石分子筛(zeolites)、金属有机框架材料(metal-organic frameworks, MOFs)和共价有机框架材料(covalent-organic frameworks, COFs)最具代表性. 随着对晶态多孔材料研究的不断深入, 众多新型的合成手段被开发用于材料的基础研究. 同时, 晶态多孔材料合成方法学的发展与其工业应用密切相关. 本综述主要概述了晶态多孔材料的各种合成手段的优缺点和它们的潜在应用.
陈俊畅 , 张明星 , 王殳凹 . 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023 , 81(2) : 146 -157 . DOI: 10.6023/A22100442
Crystalline porous materials are a class of functional materials with high porosity, diverse structures, and controllable functions, which have broad application prospects in the adsorption and separation of guest molecules, catalysis, energy storage, and many other fields. Among these, zeolites, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs) are most representative ones. With the continuous deepening research on porous materials, many novel synthesis methods have been explored for the basic research of materials. The development of crystalline porous materials synthesis methodologies is also related to their industrial applications. This review mainly focuses on the various synthesis methods for crystalline porous materials, and provides an overview of the synthesis methods of crystalline porous materials.
[1] | Davis, M. E. Nature. 2002, 417, 813. |
[2] | Kitagawa, S. Acc. Chem. Res. 2017, 50, 514. |
[3] | Slater, A. G.; Cooper, A. I. Science. 2015, 348, aaa8075. |
[4] | Lv, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica. 2021, 79, 869. (in Chinese) |
[4] | (吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.) |
[5] | Di, J.; Li, L.; Wang, Q.; Yu, J. CCS Chem. 2021, 3, 2280. |
[6] | Tao, S.; Jiang, D. CCS Chem. 2021, 3, 2003. |
[7] | Sun, Q.; Wang, N.; Yu, J. Adv. Mater. 2021, 33, 2104442. |
[8] | Corma, A. Chem Rev. 1997, 97, 2373. |
[9] | Li, Y.; Yu, J. Chem. Rev. 2014, 114, 7268. |
[10] | He, L.; Yao, Q.; Sun, M.; Ma, X. Acta Chim. Sinica. 2022, 80, 180. (in Chinese) |
[10] | (何磊, 么秋香, 孙鸣, 马晓迅, 化学学报, 2022, 80, 180.) |
[11] | Chen, L.; Sun, M.; Wang, Z.; Yang, W.; Xie, Z.; Su, B. Chem. Rev. 2020, 120, 11194. |
[12] | Li, Y.; Yu, J. Nat. Rev. Mater. 2021, 6, 1156. |
[13] | James, S. L. Chem. Soc. Rev. 2003, 32, 276. |
[14] | Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science. 2013, 341, 1230444. |
[15] | Jiang, J.; Zhao, Y.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 3255. |
[16] | Feng, L.; Wang, K.; Lv, X.; Yan, T.; Zhou, H. Natl. Sci. Rev. 2020, 7, 1743. |
[17] | Zhang, J.; Zhou, H.; Zhou, D.; Liao, P.; Chen, X. Natl. Sci. Rev. 2018, 5, 907. |
[18] | Wang, W. Acta Chim. Sinica. 2015, 73, 461. (in Chinese) |
[18] | (王为, 化学学报, 2015, 73, 461.) |
[19] | Gao, X.; Lu, W.; Wang, Y.; Song, X.; Wang, C.; Kirlikovali, K. O.; Li, P. Sci. China: Chem. 2022, 65, 2077. |
[20] | Lin, Z.; Cao, R. Acta Chim. Sinica. 2020, 78, 1309. (in Chinese) |
[20] | (林祖金, 曹荣, 化学学报, 2020, 78, 1309.) |
[21] | Lin, R.; Chen, B. Chem. 2022, 8, 2114. |
[22] | Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933. |
[23] | Li, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. Chem. Soc. Rev. 2020, 49, 2852. |
[24] | Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. Chem. Soc. Rev. 2017, 46, 3453. |
[25] | Cejka, J.; van Bekkum, H.; Corma, A.; Schueth, F. Introduction to Zeolite Molecular Sieves. Ed.: Yu, J., Elsevier, Amsterdam, 2007, Chapter 3. |
[26] | Zhou, B.; Chen, L. Acta Chim. Sinica. 2015, 73, 487. (in Chinese) |
[26] | (周宝龙, 陈龙, 化学学报, 2015, 73, 487.) |
[27] | Wu, Q.; Luan, H.; Xiao, F. Sci. China: Chem. 2022, 65, 1683. |
[28] | Sun, Y.; Zhou, H. Sci. Technol. Adv. Mater. 2015, 16, 054202. |
[29] | Yu, J.; Xu, R. Acc. Chem. Res. 2010, 43, 1195. |
[30] | Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166. |
[31] | Rabenau, A. Angew. Chem., Int. Ed. Engl. 1985, 24, 1026. |
[32] | Barrer, R. Trans. Soc. Chem. Ind. 1945, 64, 130. |
[33] | Argauer, R. J.; Olson, D. H.; Landolt, G. R. GB 1161974, 1969 [Chem. Abstr. 1983, 71, 114760]. |
[34] | Kokotailo, G.; Chu, P.; Lawton, S.; Meier, W. Nature. 1978, 275, 119. |
[35] | LaPierre, R.; Rohrman Jr, A.; Schlenker, J.; Wood, J.; Rubin, M.; Rohrbaugh, W. Zeolites. 1985, 5, 346. |
[36] | Rubin, M. K.; Rosinski, E. J.; Plank, C. J. US 4116813, 1978 [Chem. Abstr. 1983, 90, 41175]. |
[37] | Mentzen, B. F.; Vedrine, J. C.; Khouzami, R. C. R. Acad. Sci., Ser. II. 1987, 304, 11. |
[38] | Liang, J.; Li, H. Y.; Zhao, S.; Guo, W. G.; Wang, R. H.; Ying, M. L. Appl. Catal. 1990, 64, 31. |
[39] | Song, X.; Li, Y.; Gan, L.; Wang, Z.; Yu, J.; Xu, R. Angew. Chem., Int. Ed. 2009, 48, 314. |
[40] | Shao, L.; Li, Y.; Yu, J.; Xu, R. Inorg. Chem. 2012, 51, 225. |
[41] | Liu, Z.; Song, X.; Li, J.; Li, Y.; Yu, J.; Xu, R. Inorg. Chem. 2012, 51, 1969. |
[42] | Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowdert, C. Nature. 1988, 331, 698. |
[43] | Huo, Q.; Xu, R.; Li, S.; Ma, Z.; Thomas, J. M.; Jones, R. H.; Chippindale, A. M. J. Chem. Soc., Chem. Commun. 1992, 875. |
[44] | Livage, C.; Millange, F.; Walton, R. I.; Loiseau, T.; Simon, N.; O’Hare, D.; Férey, G. Chem. Commun. 2001, 994. |
[45] | Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 2002, 116, 1151. |
[46] | Yaghi, O. M.; Li, G.; Li, H. Nature. 1995, 378, 703. |
[47] | Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature. 1999, 402, 276. |
[48] | Huang, X.; Zhang, J.; Chen, X. Chin. Sci. Bull. 2003, 48, 1531. |
[49] | Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Angew. Chem., Int. Ed. 2006, 45, 1557. |
[50] | Zhang, J.; Zhang, Y.; Lin, J.; Chen, X. Chem. Rev. 2012, 112, 1001. |
[51] | Park, K. S.; Ni, Z.; C?té, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2006, 103, 10186. |
[52] | Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58. |
[53] | Wang, H.; Pei, X.; Kalmutzki, M. J.; Yang, J.; Yaghi, O. M. Acc. Chem. Res. 2022, 55, 707. |
[54] | Chui, S. S.; Lo, S. M.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science. 1999, 283, 1148. |
[55] | Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science. 2002, 295, 469. |
[56] | Férey, G.; Latroche, M.; Serre, C.; Millange, F.; Loiseau, T.; Percheron-Guégan, A. Chem. Commun. 2003, 2976. |
[57] | Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science. 2005, 309, 2040. |
[58] | Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850. |
[59] | Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science. 2005, 310, 1166. |
[60] | Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570. |
[61] | Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. J. Am. Chem. Soc. 2011, 133, 11478. |
[62] | Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524. |
[63] | El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; C?té, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science. 2007, 316, 268. |
[64] | Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Nat. Commun. 2014, 5, 4503. |
[65] | Zeng, Y.; Zou, R.; Luo, Z.; Zhang, H.; Yao, X.; Ma, X.; Zou, R.; Zhao, Y. J. Am. Chem. Soc. 2015, 137, 1020. |
[66] | Takacs, L. J. Therm. Anal. Calorim. 2007, 90, 81. |
[67] | James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413. |
[68] | Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F. J. Am. Chem. Soc. 2012, 134, 15173. |
[69] | Meng, X.; Xiao, F. Chem. Rev. 2014, 114, 1521. |
[70] | Jin, Y.; Sun, Q.; Qi, G.; Yang, C.; Xu, J.; Chen, F.; Meng, X.; Deng, F.; Xiao, F. Angew. Chem., Int. Ed. 2013, 52, 9172. |
[71] | Wu, Q.; Wang, X.; Qi, G.; Guo, Q.; Pan, S.; Meng, X.; Xu, J.; Deng, F.; Fan, F.; Feng, Z.; Li, C.; Maurer, S.; Muller, U.; Xiao, F. J. Am. Chem. Soc. 2014, 136, 4019. |
[72] | Meng, X.; Wu, Q.; Chen, F.; Xiao, F. Sci. China: Chem. 2015, 58, 6. |
[73] | Pichon, A.; Lazuen-Garay, A.; James, S. L. CrystEngComm. 2006, 8, 211. |
[74] | Pichon, A.; James, S. L. CrystEngComm. 2008, 10, 1839. |
[75] | Yuan, W.; Garay, A. L.; Pichon, A.; Clowes, R.; Wood, C. D.; Cooper, A. I.; James, S. L. CrystEngComm. 2010, 12, 4063. |
[76] | U?arevi?, K.; Wang, T. C.; Moon, S.-Y.; Fidelli, A. M.; Hupp, J. T.; Farha, O. K.; Fri??i?, T. Chem. Commun. 2016, 52, 2133. |
[77] | Ayoub, G.; Karadeniz, B.; Howarth, A. J.; Farha, O. K.; ?ilovi?, I.; Germann, L. S.; Dinnebier, R. E.; U?arevi?, K.; Fri??i?, T. Chem. Mater. 2019, 31, 5494. |
[78] | Beldon, P. J.; Fábián, L.; Stein, R. S.; Thirumurugan, A.; Cheetham, A. K.; Fri??i?, T. Angew. Chem., Int. Ed. 2010, 49, 9640. |
[79] | Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328. |
[80] | Peng, Y.; Xu, G.; Hu, Z.; Cheng, Y.; Chi, C.; Yuan, D.; Cheng, H.; Zhao, D. ACS Appl. Mater. Interfaces. 2016, 8, 18505. |
[81] | Karak, S.; Kandambeth, S.; Biswal, B. P.; Sasmal, H. S.; Kumar, S.; Pachfule, P.; Banerjee, R. J. Am. Chem. Soc. 2017, 139, 1856. |
[82] | Pal, P.; Das, J. K.; Das, N.; Bandyopadhyay, S. Ultrason. Sonochem. 2013, 20, 314. |
[83] | Huang, L.; Qin, F.; Huang, Z.; Zhuang, Y.; Ma, J.; Xu, H.; Shen, W. Ind. Eng. Chem. Res. 2016, 55, 7318. |
[84] | Mu, Y.; Zhang, Y.; Fan, J.; Guo, C. Ultrason. Sonochem. 2017, 38, 430. |
[85] | Qiu, L.; Li, Z.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Chem. Commun. 2008, 3642. |
[86] | Son, W.; Kim, J.; Kim, J.; Ahn, W. Chem. Commun. 2008, 6336. |
[87] | Li, Z.; Qiu, L.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.; Jiang, X. Mater. Lett. 2009, 63, 78. |
[88] | Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Chem. - Eur. J. 2010, 16, 1046. |
[89] | Cho, H.; Kim, J.; Kim, S.; Ahn, W. Microporous Mesoporous Mater. 2013, 169, 180. |
[90] | Kim, J.; Yang, S.; Choi, S. B.; Sim, J.; Kim, J.; Ahn, W. J. Mater. Chem. 2011, 21, 3070. |
[91] | Yang, S.; Kim, J.; Cho, H.; Kim, S.; Ahn, W. RSC Adv. 2012, 2, 10179. |
[92] | Zhao, W.; Yan, P.; Yang, H.; Bahri, M.; James, A. M.; Chen, H.; Liu, L.; Li, B.; Pang, Z.; Clowes, R.; Browning, N. D.; Ward, J. W.; Wu, Y.; Cooper, A. I. Nat. Synth. 2022, 1, 87. |
[93] | Chu, P.; Dwyer, F. G.; Vartuli, J. C. US 4778666, 1988 [Chem. Abstr. 1988, 110, 10669] |
[94] | Zeng, X.; Hu, X.; Song, H.; Xia, G.; Shen, Z.; Yu, R.; Moskovits, M. Microporous Mesoporous Mater. 2021, 323, 111262. |
[95] | Xu, R.; Pan, W. Chemistry-Zeolites and Porous Materials. Ed.: Xu, R., Science Press, Beijing, 2004, Chapter 4. 2. (in Chinese) |
[95] | (徐如人, 庞文琴, 分子筛与多孔材料化学, 科学出版社, 北京, 2004, 4.2章.) |
[96] | Stenzel, C.; Brinkmann, M.; Muller, J.; Schertlen, R.; Venot, Y.; Wiesbeck, W. J. Microw. Power Electromagn. Energy. 2001, 36, 155. |
[97] | Xu, Y.; Tian, Z.; Wang, S.; Hu, Y.; Wang, L.; Wang, B.; Ma, Y.; Hou, L.; Yu, J.; Lin, L. Angew. Chem., Int. Ed. 2006, 45, 3965. |
[98] | Cai, R.; Liu, Y.; Gu, S.; Yan, Y. J. Am. Chem. Soc. 2010, 132, 12776. |
[99] | Jhung, S.; Lee, J.; Chang, J. Bull. Korean Chem. Soc. 2005, 26, 880. |
[100] | Choi, J.; Kim, J.; Jhung, S.; Kim, H.; Chang, J.; Chae, H. K. Bull. Korean Chem. Soc. 2006, 27, 1523. |
[101] | Ni, Z.; Masel, R. I. J. Am. Chem. Soc. 2006, 128, 12394. |
[102] | Lu, C.; Liu, J.; Xiao, K.; Harris, A. T. Chem. Eng. J. 2010, 156, 465. |
[103] | Seo, Y.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.; Chang, J. Microporous Mesoporous Mater. 2009, 119, 331. |
[104] | Park, J.; Park, S.; Jhung, S. J. Korean Chem. Soc. 2009, 53, 553. |
[105] | Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Chem. Mater. 2009, 21, 204. |
[106] | Zhang, W.; Li, C.; Yuan, Y.; Qiu, L.; Xie, A.; Shen, Y.; Zhu, J. J. Mater. Chem. 2010, 20, 6413. |
[107] | Wei, H.; Chai, S.; Hu, N.; Yang, Z.; Wei, L.; Wang, L. Chem. Commun. 2015, 51, 12178. |
[108] | Kuehl, V. A.; Yin, J.; Duong, P. H.; Mastorovich, B.; Newell, B.; Li-Oakey, K. D.; Parkinson, B. A.; Hoberg, J. O. J. Am. Chem. Soc. 2018, 140, 18200. |
[109] | Zhu, Y.; Wan, S.; Jin, Y.; Zhang, W. J. Am. Chem. Soc. 2015, 137, 13772. |
[110] | Mueller, U.; Puetter, H.; Hesse, M.; Wessel, H. WO 049892, 2005 [Chem. Abstr. 2005, 143, 15348] |
[111] | Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626. |
[112] | Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Chem. Mater. 2009, 21, 2580. |
[113] | Van Assche, T. R.; Desmet, G.; Ameloot, R.; De Vos, D. E.; Terryn, H.; Denayer, J. F. Microporous Mesoporous Mater. 2012, 158, 209. |
[114] | Czaja, A. U.; Trukhan, N.; Müller, U. Chem. Soc. Rev. 2009, 38, 1284. |
[115] | Zhang, Q.; Wu, Z.; Lv, Y.; Li, Y.; Zhao, Y.; Zhang, R.; Xiao, Y.; Shi, X.; Zhang, D.; Hua, R.; Yao, J.; Guo, J.; Huang, R.; Cui, Y.; Kang, Z.; Goswami, S.; Robison, L.; Song, K.; Li, X.; Han, Y.; Chi, L.; Farha, O. K.; Lu, G. Angew. Chem., Int. Ed. 2019, 58, 1123. |
[116] | Martinez Joaristi, A.; Juan-Alca?iz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Cryst. Growth Des. 2012, 12, 3489. |
[117] | Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Microporous Mesoporous Mater. 2013, 168, 57. |
[118] | Stassen, I.; Styles, M.; Van Assche, T.; Campagnol, N.; Fransaer, J.; Denayer, J.; Tan, J.; Falcaro, P.; De Vos, D.; Ameloot, R. Chem. Mater. 2015, 27, 1801. |
[119] | Rotter, J.; Weinberger, S.; Kampmann, J.; Sick, T.; Shalom, M.; Bein, T.; Medina, D. Chem. Mater. 2019, 31, 10008. |
[120] | Wang, L.; Xu, C.; Zhang, W.; Zhang, Q.; Zhao, M.; Zeng, C.; Jiang, Q.; Gu, C.; Ma, Y. J. Am. Chem. Soc. 2022, 144, 8961. |
[121] | Aguilera-Sigalat, J.; Fox-Charles, A.; Bradshaw, D. Chem. Commun. 2014, 50, 15453. |
[122] | Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J. H.; Wang, J.; Li, Y.; Corma, A.; Xu, R.; Yu, J. Science. 2016, 351, 1188. |
[123] | Kim, S.; Lim, H.; Lee, J.; Choi, H. C. Langmuir. 2018, 34, 8731. |
[124] | Kim, S.; Choi, H. C. Commun. Chem. 2019, 2, 60. |
[125] | Zhang, M.; Chen, J.; Zhang, S.; Zhou, X.; He, L.; Sheridan, M. V.; Yuan, M.; Zhang, M.; Chen, L.; Dai, X.; Ma, F.; Wang, J.; Hu, J.; Wu, G.; Kong, X.; Zhou, R.; Albrecht-Schmitt, T. E.; Chai, Z.; Wang, S. J. Am. Chem. Soc. 2020, 142, 9169. |
[126] | Chen, J.; Zhang, M.; Shu, J.; Yuan, M.; Yan, W.; Bai, P.; He, L.; Shen, N.; Gong, S.; Zhang, D.; Li, J.; Hu, J.; Li, R.; Wu, G.; Chai, Z.; Yu, J.; Wang, S. Angew. Chem., Int. Ed. 2021, 60, 14858. |
[127] | Chen, J.; Zhang, M.; Zhang, S.; Cao, K.; Mao, X.; Zhang, M.; He, L.; Dong, X.; Shu, J.; Dong, H.; Zhai, F.; Shen, R.; Yuan, M.; Zhao, X.; Wu, G.; Chai, Z.; Wang, S. Angew. Chem., Int. Ed. 2022, e202212532. |
[128] | Chen, X.; Qiu, M.; Li, S.; Yang, C.; Shi, L.; Zhou, S.; Yu, G.; Ge, L.; Yu, X.; Liu, Z.; Sun, N.; Zhang, K.; Wang, H.; Wang, M.; Zhong, L.; Sun, Y. Angew. Chem., Int. Ed. 2020, 59, 11325. |
[129] | Sun, C.; Liu, Z.; Wang, S.; Pang, H.; Bai, R.; Wang, Q.; Chen, W.; Zheng, A.; Yan, W.; Yu, J. CCS Chem. 2021, 3, 189. |
[130] | Garzón-Tovar, L.; Rodríguez-Hermida, S.; Imaz, I.; Maspoch, D. J. Am. Chem. Soc. 2017, 139, 897. |
[131] | Jiang, X.; Zeng, X.; He, J.; Xu, F.; Deng, P.; Jia, J.; Jiang, X.; Hou, X.; Long, Z. Chem. Commun. 2019, 55, 12192. |
[132] | He, J.; Jiang, X.; Xu, F.; Li, C.; Long, Z.; Chen, H.; Hou, X. Angew. Chem., Int. Ed. 2021, 60, 9984. |
[133] | Huang, K.; Chi, H.; Kao, P.; Huang, F.; Jian, Q.-M.; Cheng, I.; Lee, W.; Hsu, C.; Kang, D. ACS Appl. Mater. Interfaces. 2018, 10, 900. |
[134] | Zhou, Y.; Yan, P.; Zhang, S.; Zhang, Y.; Chang, H.; Zheng, X.; Jiang, J.; Xu, Q. Fundam. Res. 2021, 2, 674. |
[135] | Peng, L.; Guo, Q.; Song, C.; Ghosh, S.; Xu, H.; Wang, L.; Hu, D.; Shi, L.; Zhao, L.; Li, Q.; Sakurai, T.; Yan, H.; Seki, S.; Liu, Y.; Wei, D. Nat. Commun. 2021, 12, 5077. |
[136] | Wang, Z.; Zhu, Q.; Wang, J.; Jin, F.; Zhang, P.; Yan, D.; Cheng, P.; Chen, Y.; Zhang, Z. Sci. China: Chem. 2022, 65, 2144. |
[137] | Zhang, P.; Wang, Z.; Wang, S.; Wang, J.; Liu, J.; Wang, T.; Chen, Y.; Cheng, P.; Zhang, Z. Angew. Chem., Int. Ed. 2022, e202213247. |
/
〈 |
|
〉 |