三核过渡金属配合物在催化反应中的研究进展
收稿日期: 2022-10-11
网络出版日期: 2022-12-05
基金资助
项目受中央高校基本科研业务费(2022YQHH01); 福建省海洋传感功能材料重点实验室(闽江学院)开放课题(MJUKF-FMSM202202); 国家自然科学基金(21902182)
Trinuclear Transition Metal Complexes in Catalytic Reactions
Received date: 2022-10-11
Online published: 2022-12-05
Supported by
Fundamental Research Funds for the Central Universities(2022YQHH01); Open Project Program of Fujian Key Laboratory of Functional Marine Sensing Materials(MJUKF-FMSM202202); National Natural Science Foundation of China(21902182)
多核过渡金属配合物作为一类广泛应用的均相催化剂, 其设计灵感往往来自天然酶的多金属活性位点所发挥的重要作用. 目前, 三核金属配合物作为活化小分子的多金属催化剂受到了广泛的关注. 为深入理解三核过渡金属配合物在催化反应中作用特点, 对近年报道的代表性三核过渡金属配合物按金属中心进行分类, 并对配体环境形成特点及催化应用进行综述. 从金属中心出发, 讨论了三核过渡金属配合物的几何结构和电子特征; 从配体环境出发, 总结了关联三个独立的金属位点的配位环境特征; 在催化应用方面, 重点综述了三核过渡金属配合物在涉及特定化学键活化反应的催化作用机制, 最后对三核过渡金属配合物的催化应用前景进行展望.
马雪璐 , 李蒙 , 雷鸣 . 三核过渡金属配合物在催化反应中的研究进展[J]. 化学学报, 2023 , 81(1) : 84 -99 . DOI: 10.6023/A22100425
Polynuclear transition metal complexes are widely used as homogeneous catalysts, and the polymetallic active sites of enzymes also play an important role in the mechanism of biochemical reactions under ambient conditions. As the efficient polymetallic catalysts for the activation of small molecules, trinuclear metal complexes have been attracted extensive attention. In order to understand the role of trinuclear transition metal complexes in catalytic reactions, we have classified the trinuclear transition metal complexes according to metal centers, and summarized the characteristics of their ligands, as well as their catalytic applications. Based on the metal centers, the geometric structure and electronic characteristics of the complexes are discussed. Based on the peripheral ligands, the characteristics of the coordination environment, which enable the aggregation of three independent metal sites, are highlighted. In terms of catalytic applications of trinuclear transition metal complexes, the catalytic mechanisms involving specific chemical bonds activation are focused on. Finally, we outlook the crucial potential application in this emerging field.
| [1] | Peng, W.; Qu, X.-Y.; Shaik, S.; Wang, B.-J. Nat. Catal. 2021, 4, 266. |
| [2] | Wang, C.-C.; Maji, S.; Chen, P.-Y.; Lee, H. K.; Yu, S.-F.; Chan, S. I. Chem. Rev. 2017, 117, 8574. |
| [3] | Chan, S. I.; Yu, S.-F. Nat. Catal. 2019, 2, 286. |
| [4] | Salvadeo, E.; Dubois, L.; Latour, J.-M. Coord. Chem. Rev. 2018, 374, 345. |
| [5] | Maity, R.; Birenheide, B. S.; Breher, F.; Sarkar, B. ChemCatChem 2021, 13, 2337. |
| [6] | Wang, Q.-R.; Brooks, S. H.; Liu, T.-C.; Tomson, N. C. Chem. Commun. 2021, 57, 2839. |
| [7] | Tiwari, C. S.; Illam, P. M.; Donthireddy, S.; Rit, A. Chem. Eur. J. 2021, 27, 16581. |
| [8] | Shima, T.; Hu, S.-W.; Luo, G.; Kang, X.-H.; Luo, Y.; Hou, Z.-M. Science 2013, 340, 1549. |
| [9] | Hu, S.-W.; Shima, T.; Hou, Z.-M. Nature 2014, 512, 413. |
| [10] | Hu, S.-W.; Luo, G.; Shima, T.; Luo, Y.; Hou, Z.-M. Nat. Commun. 2017, 8, 1866. |
| [11] | Hu, S.-W.; Shima, T.; Hou, Z.-M. J. Am. Chem. Soc. 2020, 142, 19889. |
| [12] | Maass, J. S.; Chen, Z.; Zeller, M.; Tuna, F.; Winpenny, R. E.; Luck, R. L. Inorg. Chem. 2012, 51, 2766. |
| [13] | Qi, X.-Y.; Wang, K.; Wang, Q.-L.; Yuan, F.-C.; Ren, H.-X.; Ma, Y.; Liao, D.-Z. J. Chin. Chem. Soc. 2016, 63, 985. |
| [14] | Shima, T.; Yang, J.-M.; Luo, G.; Luo, Y.; Hou, Z.-M. J. Am. Chem. Soc. 2020, 142, 9007. |
| [15] | Kurogi, T.; Irifune, K.; Enoki, T.; Takai, K. Chem. Commun. 2021, 57, 5199. |
| [16] | Guillamón, E.; Oliva, M.; Andrés, J.; Llusar, R.; Pedrajas, E.; Safont, V. S.; Algarra, A. G.; Basallote, M. G. ACS Catal. 2020, 11, 608. |
| [17] | Gushchin, A. L.; Shmelev, N. Y.; Malysheva, S. F.; Artem'ev, A. V.; Belogorlova, N. A.; Abramov, P. A.; Laricheva, Y. A.; Fomenko, I. S.; Piryazev, D. A.; Sheven, D. G.; Sokolov, M. N. Inorg. Chim. Acta 2020, 508, 119645. |
| [18] | Ledesma, G. N.; Anxolabehere-Mallart, E.; Riviere, E.; Mallet- Ladeira, S.; Hureau, C.; Signorella, S. R. Inorg. Chem. 2014, 53, 2545. |
| [19] | Yarovoy, S. S.; Gayfulin, Y. M.; Smolentsev, A. I.; Yanshole, V. V.; Mironov, Y. V. Inorg. Chem. 2021, 60, 5980. |
| [20] | Rodriguez, M. M.; Bill, E.; Brennessel, W. W.; Holland, P. L. Science 2011, 334, 780. |
| [21] | Figg, T. M.; Holland, P. L.; Cundari, T. R. Inorg. Chem. 2012, 51, 7546. |
| [22] | Wang, Y.; Shi, L. T.; Qian, B. Z.; Huang, X. J.; Sun, X. D.; Wang, B. X.; Song, X. M.; Huang, H. W.; Zhang, Y.; Ma, T. Y. Chem. Eng. J. 2021, 413, 127551. |
| [23] | Till, M.; Kelly, J. A.; Ziegler, C. G. P.; Wolf, R.; Guo, T.; Ringenberg, M. R.; Lutsker, E.; Reiser, O. Organometallics 2021, 40, 1042. |
| [24] | Hao, Z.-Q.; Li, Y.; Ma, Z.-H.; Han, Z.-G.; Lin, J.; Lu, G.-L. J. Organomet. Chem. 2021, 932, 121647. |
| [25] | Takao, T.; Suzuki, H.; Shimogawa, R. Organometallics 2021, 40, 1303. |
| [26] | Eaton, M. C.; Catalano, V. J.; Shearer, J.; Murray, L. J. J. Am. Chem. Soc. 2021, 143, 5649. |
| [27] | Fu, D. W.; Song, Y. M.; Wang, G. X.; Ye, Q.; Xiong, R. G.; Akutagawa, T.; Nakamura, T.; Chan, P. W. H.; Huang, S. D. J. Am. Chem. Soc. 2007, 129, 5346. |
| [28] | Suseno, S.; Horak, K. T.; Day, M. W.; Agapie, T. Organometallics 2013, 32, 6883. |
| [29] | Chen, Z.-T.; Zhao, X.-X.; Gong, X.-Y.; Xu, D.; Ma, Y.-G. Macromolecules 2017, 50, 6561. |
| [30] | Pieri, C.; Bhattacharjee, A.; Barrozo, A.; Faure, B.; Giorgi, M.; Fize, J.; Reglier, M.; Field, M.; Orio, M.; Artero, V.; Hardre, R. Chem. Commun. 2020, 56, 11106. |
| [31] | Saha, P.; Amanullah, S.; Dey, A. J. Am. Chem. Soc. 2020, 142, 17312. |
| [32] | Shoshani, M. M.; Agapie, T. Chem. Commun. 2020, 56, 11279. |
| [33] | Lv, C.-L.; Cheng, H.; He, W.; Shah, M. I. A.; Xu, C.-Q.; Meng, X.-J.; Jiao, L.; Wei, S.-Q.; Li, J.; Liu, L.; Li, Y.-D. Nano Res. 2016, 9, 2544. |
| [34] | Fu, F.-Y.; Xiang, J.; Cheng, H.; Cheng, L.-J.; Chong, H.-B.; Wang, S.-X.; Li, P.; Wei, S.-Q.; Zhu, M.-Z.; Li, Y.-D. ACS Catal. 2017, 7, 1860. |
| [35] | Sugawa, T.; Yamamoto, K.; Murahashi, T. Chem. Commun. 2018, 54, 5875. |
| [36] | Yamamoto, K.; Sawada, J.; Murahashi, T. Chem.-Eur. J. 2020, 26, 8388. |
| [37] | Di Francesco, G. N.; Gaillard, A.; Ghiviriga, I.; Abboud, K. A.; Murray, L. J. Inorg. Chem. 2014, 53, 4647. |
| [38] | Liu, Y. F.; Du, L. Inorg. Chem. 2018, 57, 3261. |
| [39] | Wang, J. M.; Liu, Y. R.; Mao, X. Y.; Shi, N. N.; Zhang, X.; Wang, H. S.; Fan, Y. H.; Wang, M. Chem. Asian J. 2019, 14, 2685. |
| [40] | Gopalakrishnan, M.; Krittametaporn, N.; Yoshinari, N.; Konno, T.; Sangtrirutnugul, P. New J. Chem. 2020, 44, 13764. |
| [41] | Geer, A. M.; Musgrave III, C.; Webber, C.; Nielsen, R. J.; McKeown, B. A.; Liu, C.; Schleker, P. P. M.; Jakes, P.; Jia, X.; Dickie, D. A.; Granwehr, J.; Zhang, S.; Machan, C. W.; Goddard, W. A.; Gunnoe, T. B. ACS Catal. 2021, 11, 7223. |
| [42] | Melgarejo, D. Y.; Chiarella, G. M.; Fackler, J. P., Jr. Inorg. Chem. 2016, 55, 11883. |
| [43] | Akine, S.; Taniguchi, T.; Nabeshima, T. Inorg. Chem. 2004, 43, 6142. |
| [44] | Escarcega-Bobadilla, M. V.; Martinez Belmonte, M.; Martin, E.; Escudero-Adan, E. C.; Kleij, A. W. Chem.-Eur. J. 2013, 19, 2641. |
| [45] | Liu, X.; Du, P.-W.; Cao, R. Nat. Commun. 2013, 4, 2375. |
| [46] | Pandey, A. K.; Usman, M.; Rath, S. P. Inorg. Chem. 2020, 59, 12988. |
| [47] | Kameo, H.; Nakajima, Y.; Namura, K.; Suzuki, H. Organometallics 2011, 30, 6703. |
| [48] | Powers, T. M.; Gu, N. X.; Fout, A. R.; Baldwin, A. M.; Hernandez Sanchez, R.; Alfonso, D. M.; Chen, Y. S.; Zheng, S. L.; Betley, T. A. J. Am. Chem. Soc. 2013, 135, 14448. |
| [49] | Dunn, P. L.; Chatterjee, S.; MacMillan, S. N.; Pearce, A. J.; Lancaster, K. M.; Tonks, I. A. Inorg. Chem. 2019, 58, 11762. |
| [50] | Kulichenko, M.; Fedik, N.; Monfredini, A.; Mu?oz-Castro, A.; Balestri, D.; Boldyrev, A. I.; Maestri, G. Chem. Sci. 2021, 12, 477. |
| [51] | Dutta, S.; Ghosh, T. K.; Mahapatra, P.; Ghosh, A. Inorg. Chem. 2020, 59, 14989. |
| [52] | Verpekin, V. V.; Shor, A. M.; Vasiliev, A. D.; Kondrasenko, A. A.; Chudin, O. S.; Ivanova-Shor, E. A. Dalton Trans. 2020, 49, 17527. |
| [53] | Guillet, G. L.; Sloane, F. T.; Ermert, D. M.; Calkins, M. W.; Peprah, M. K.; Knowles, E. S.; Cizmar, E.; Abboud, K. A.; Meisel, M. W.; Murray, L. J. Chem. Commun. 2013, 49, 6635. |
| [54] | Di Francesco, G. N.; Gaillard, A.; Ghiviriga, I.; Abboud, K. A.; Murray, L. J. Inorg. Chem. 2014, 53, 4647. |
| [55] | Murray, L. J.; Weare, W. W.; Shearer, J.; Mitchell, A. D.; Abboud, K. A. J. Am. Chem. Soc. 2014, 136, 13502. |
| [56] | Lee, Y.; Sloane, F. T.; Blondin, G.; Abboud, K. A.; Garcia-Serres, R.; Murray, L. J. Angew. Chem. Int. Ed. 2015, 54, 1499. |
| [57] | Akine, S.; Taniguchi, T.; Nabeshima, T. Angew. Chem. 2002, 114, 4864. |
| [58] | Akine, S.; Matsumoto, T.; Taniguchi, T.; Nabeshima, T. Inorg. Chem. 2005, 44, 3270. |
| [59] | Akine, S.; Taniguchi, T.; Nabeshima, T. J. Am. Chem. Soc. 2006, 128, 15765. |
| [60] | Chen, L.; Dong, W.-K.; Zhang, H.; Zhang, Y.; Sun, Y.-X. Cryst. Growth. Des. 2017, 17, 3636. |
| [61] | Tsui, E. Y.; Kanady, J. S.; Day, M. W.; Agapie, T. Chem. Commun. 2011, 47, 4189. |
| [62] | Jin, P.; Li, F.; Chen, Z. J. Phys. Chem. A 2011, 115, 2402. |
| [63] | Eaton, M. C.; Knight, B. J.; Catalano, V. J.; Murray, L. J. Eur. J. Inorg. Chem. 2020, 2020, 1519. |
| [64] | Horak, K. T.; Lin, S.; Rittle, J.; Agapie, T. Organometallics 2015, 34, 4429. |
| [65] | Maruyama, T.; Kikukawa, Y.; Sakiyama, H.; Katayama, M.; Inada, Y.; Hayashi, Y. RSC Adv. 2017, 7, 37666. |
| [66] | Xu, C. Q.; Xing, D. H.; Xiao, H.; Li, J. J. Phys. Chem. C 2017, 121, 10992. |
| [67] | Moosavifar, M.; Navid Arbat, A.; Ranjbar, M.; Hojati, S. F. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 1387. |
| [68] | Cherkasov, N.; Ibhadon, A.; Fitzpatrick, P. Chem. Eng. Process. 2015, 90, 24. |
| [69] | Forrest, S. J. K.; Schluschass, B.; Yuzik-Klimova, E. Y.; Schneider, S. Chem. Rev. 2021, 121, 6522. |
| [70] | Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041. |
| [71] | Hoffman, B. M.; Lukoyanov, D.; Dean, D. R.; Seefeldt, L. C. Acc. Chem. Res. 2013, 46, 587. |
| [72] | Lukoyanov, D.; Yang, Z.-Y.; Khadka, N.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. J. Am. Chem. Soc. 2015, 137, 3610. |
| [73] | Yang, Z.-Y.; Khadka, N.; Lukoyanov, D.; Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Proc. Natl. Acad. Sci. 2013, 110, 16327. |
| [74] | Lv, Z.-J.; Wei, J.; Zhang, W.-X.; Chen, P.; Deng, D.; Shi, Z.-J.; Xi, Z. Natl. Sci. Rev. 2020, 7, 1564. |
| [75] | Figg, T. M.; Holland, P. L.; Cundari, T. R. Inorg. Chem. 2012, 51, 7546. |
| [76] | McWilliams, S. F.; Holland, P. L. Acc. Chem. Res. 2015, 48, 2059. |
| [77] | Reiners, M.; Baabe, D.; Münster, K.; Zaretzke, M.-K.; Freytag, M.; Jones, P. G.; Coppel, Y.; Bontemps, S.; Rosal, I. d.; Maron, L.; Walter, M. D. Nat. Chem. 2020, 12, 740. |
| [78] | Kefalidis, C. E.; Perrin, L.; Burns, C. J.; Berg, D. J.; Maron, L.; Andersen, R. A. Dalton Trans. 2015, 44, 2575. |
| [79] | Umehara, K.; Kuwata, S.; Ikariya, T. J. Am. Chem. Soc. 2013, 135, 6754. |
| [80] | Zhang, Y.-W.; Ma, X.-L.; Zhang, X.; Lei, M. Acta Chim. Sinica 2016, 74, 340. (in Chinese) |
| [80] | ( 张益伟, 马雪璐, 张欣, 雷鸣, 化学学报, 2016, 74, 340.) |
| [81] | Kiernicki, J. J.; Zeller, M.; Szymczak, N. K. J. Am. Chem. Soc. 2017, 139, 18194. |
| [82] | Kiernicki, J. J.; Zeller, M.; Szymczak, N. K. Inorg. Chem. 2019, 58, 1147. |
| [83] | Gu, N. X.; Ung, G.; Peters, J. C. Chem. Commun. 2019, 55, 5363. |
| [84] | Nakajima, Y.; Suzuki, H. Organometallics 2003, 22, 959. |
| [85] | Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. |
| [86] | Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75. |
| [87] | Liu, X.-X.; Yan, L.; Fu, Y. Acta Chim. Sinica 2017, 75, 788. (in Chinese) |
| [87] | ( 刘新鑫, 严龙, 傅尧, 化学学报, 2017, 75, 788.) |
| [88] | Sattler, A.; Parkin, G. Nature 2010, 463, 523. |
| [89] | Kang, X.-H.; Luo, G.; Luo, L.; Hu, S.-W.; Luo, Y.; Hou, Z.-M. J. Am. Chem. Soc. 2016, 138, 11550. |
| [90] | Zhu, B.; Guan, W.; Yan, L. K.; Su, Z. M. J. Am. Chem. Soc. 2016, 138, 11069. |
| [91] | Serafino, A.; Camedda, N.; Lanzi, M.; Della Ca, N.; Cera, G.; Maestri, G. J. Org. Chem. 2021, 86, 15433. |
| [92] | Shitaya, S.; Nomura, K.; Inagaki, A. Chem. Commun. 2019, 55, 5087. |
| [93] | Shi, L.; Ji, Y.; Huang, W.-X.; Zhou, Y.-G. Acta Chim. Sinica 2014, 72, 820. (in Chinese) |
| [93] | ( 时磊, 姬悦, 黄文学, 周永贵, 化学学报, 2014, 72, 820.) |
| [94] | Yu, J.-Q.; Ding, K.-L. Acta Chim. Sinica 2015, 73, 1223. (in Chinese) |
| [94] | ( 余金权, 丁奎岭, 化学学报, 2015, 73, 1223.) |
| [95] | Liu, X.; Kuang, C.-X.; Su, C.-H. Acta Chim. Sinica 2022, 80, 1135. (in Chinese) |
| [95] | ( 刘霞, 匡春香, 苏长会, 化学学报, 2022, 80, 1135.) |
| [96] | Ma, X.-L. Univ. Chem. 2020, 35, 47. (in Chinese) |
| [96] | ( 马雪璐, 大学化学, 2020, 35, 47.) |
/
| 〈 |
|
〉 |