综述

硫酯参与的有机催化不对称反应研究进展

  • 王晓晨 ,
  • 季泽尧 ,
  • 刘健 ,
  • 王炳福 ,
  • 金辉 ,
  • 张立新
展开
  • a 沈阳化工大学功能分子研究所 硼镁资源开发与精细化工技术国家地方联合工程实验室 沈阳 110142
    b 辽宁科技大学化学工程学院 鞍山 110031

王晓晨, 1994年出生于山东菏泽, 2018年在山东第一医科大学获得学士学位, 2020年至今在张立新教授和金辉博士的指导下攻读硕士学位. 研究兴趣是发展以硫酯为底物的合成方法学合成具有潜在生物活性的分子.

季泽尧, 1998年出生于河南南阳, 2021年毕业于吉林化工学院制药工程专业获得学士学位. 2021年至今在张立新教授和金辉博士的指导下攻读硕士学位. 研究兴趣是发展新的合成方法学合成具有潜在生物活性的分子.

刘健, 1996年出生于辽宁鞍山, 2019年在辽宁科技大学获得学士学位. 2021年至今在张立新教授和金辉博士的指导下攻读硕士学位. 研究兴趣是发展新的合成方法学合成具有潜在生物活性的分子.

王炳福, 1992年出生于黑龙江哈尔滨, 2015年和2018年在辽宁科技大学先后获得学士和硕士学位, 2019年至今, 在张立新教授和金辉博士的指导下攻读博士学位. 研究方向为不对称有机小分子催化.

金辉讲师、硕士生导师. 1989年出生于辽宁丹东, 2011年在大连医科大学获得学士学位(药学). 2014年在沈阳药科大学获得硕士学位(药物化学). 2014年至2018年在韩国成均馆大学化学系学习并获得有机化学博士学位(导师:Do Hyun Ryu教授). 2018年加入沈阳化工大学功能分子研究所从事科研教学工作. 研究兴趣主要是发展新的合成方法学合成具有潜在生物活性的分子.

张立新教授、博士生导师. 1966年出生于辽宁锦州, 1987年在兰州大学获得学士学位. 1993年在沈阳化工研究院获得硕士学位. 2000年至2004年在英国利兹大学化学系学习并获得有机化学博士学位(导师:Ronald Grigg教授). 曾就职于沈阳化工研究院(1987~2000, 高级工程师)、2016年加入沈阳化工大学, 组建功能分子研究所. 研究兴趣主要是新农药、医药创制和有机合成方法学.

收稿日期: 2022-10-10

  网络出版日期: 2022-12-06

基金资助

项目受辽宁省教育厅科学研究项目(LQ2020025); 南宁市科学研究与技术开发计划项目(20201043)

Advances in Organocatalytic Asymmetric Reactions Involving Thioesters

  • Xiaochen Wang ,
  • Zeyao Ji ,
  • Jian Liu ,
  • Bingfu Wang ,
  • Hui Jin ,
  • Lixin Zhang
Expand
  • a National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology and Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142
    b School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 110031

Received date: 2022-10-10

  Online published: 2022-12-06

Supported by

Science and Technology Project of Liaoning Education Department(LQ2020025); Nanning Scientific Research and Technology Development Program(20201043)

摘要

硫酯在生物合成和有机合成中扮演着十分重要的角色. 硫酯的羰基C(2p)轨道和S(3p)轨道重叠度较小, 其α质子具有较强的酸性, 能在温和的条件下烯醇化并进行亲核反应. 同时, 硫酯还是高效的酰基化试剂, 可用于酯键和酰胺键的构建. 有机小分子催化是不对称催化的重要研究领域. 近十几年来有机催化硫酯底物的不对称反应取得了大量重要成果, 极大拓宽了有机催化酯类底物的反应类型, 并实现了一些其氧酯类似物无法实现的反应. 本综述按照硫酯底物的类型(可烯醇化硫酯和α,β-不饱和硫酯)、有机催化剂类型和反应类型对硫酯底物参与的有机催化不对称反应进行梳理和总结, 同时对代表性反应的机理以及该领域的未来发展进行了简单阐述.

本文引用格式

王晓晨 , 季泽尧 , 刘健 , 王炳福 , 金辉 , 张立新 . 硫酯参与的有机催化不对称反应研究进展[J]. 化学学报, 2023 , 81(1) : 64 -83 . DOI: 10.6023/A22100422

Abstract

Thioesters play a very important role in biosynthesis and organic synthesis. Due to smaller orbital overlap of the C(2p) and S(3p) orbitals, the α-proton acidity of thioesters is higher than that of the related oxoesters, making thioesters useful enolate precursors in nature as well as in the laboratory. Meanwhile, thioesters are also efficient acylation reagents which can be used for the construction of ester bond and amide bond. Organocatalysis, a biomimetic catalysis usually with metal- free small organic molecules, is an emerging research field that has been booming since the beginning of the 21st century. In the past decade, many important achievements have been made in the organocatalytic asymmetric reactions involving thioester substrates, which have greatly broadened the reaction types of organocatalytic reactions with ester substrates and realized some reactions that cannot be achieved by using their oxoester analogues. The advances in organocatalytic asymmetric reactions involving thioesters are summarized in this review. According to the types of thioester substrates, these advances are classified to two types. One type is the organocatalytic asymmetric reactions with enolizable thioesters such as trifluoroethyl thioesters, malonic acid half-thioesters (MAHTs), monothiomalonates (MTMs) and dithiomalonates (DTMs). For these reactions, noncovalent interactions between catalysts and thioesters, including hydrogen bonding and ion pair interaction, have been used to promote the reaction and to achieve the high enantioselectivity. Another type is the catalytic asymmetric reactions with α,β-unsaturated thioesters. For the reaction of this type, various chiral organocatalysts, including chiral amines, ureas, NHC (N-heterocyclic carbene), isothiourea, amidine and others, not only activate the thioester substrates, but also control the enantioselectivity well through covalent and non-covalent bonds. Meanwhile, the mechanism of representative transformations will be briefly introduced and at last, the perspective in this area will be given.

参考文献

[1]
(a) Ding, K. L.; Fan, Q. H. Asymmetric Catalysis: New Concepts and Methods, Chemical Industry Press, Beijing, 2009. (in Chinese)
[1]
( 丁奎岭, 范青华, 不对称催化新概念与新方法, 化学工业出版社, 北京, 2009.)
[1]
(b) Ding, K. L. Acta Chim. Sinica 2014, 72, 755. (in Chinese)
[1]
( 丁奎岭, 化学学报 2014, 72, 755.)
[1]
(c) Dalko, P. I. Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Wiley-VCH Verlag GmbH, Weinheim, 2013.
[2]
Saha, D.; Kharbanda, A.; Yan, W.; Lakkaniga, N. R.; Frett, B.; Li, H.-y. J. Med. Chem. 2020, 63, 441.
[3]
(a) Mulholland, A. J.; Lyne, P. D.; Karplus, M. J. Am. Chem. Soc. 2000, 122, 534.
[3]
(b) Usher, K. C.; Remington, S. J.; Martin, D. P.; Drueckhammer, D. G. Biochemistry 1994, 33, 7753.
[3]
(c) Wiegand, G.; Remington, S. J. Ann. Rev. Biophys. Chem. 1986, 15, 97.
[4]
(a) Hill, A. M. Nat. Prod. Rep. 2006, 23, 256.
[4]
(b) Staunton, J.; Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380.
[5]
(a) Masamune, S.; Kamata, S.; Schilling, W. J. Am. Chem. Soc. 1975, 97, 3515.
[5]
(b) Masamune, S.; Hayase, Y.; Schilling, W.; Chan, W. K.; Bates, G. S. J. Am. Chem. Soc. 1977, 99, 6756.
[6]
Yang, X.; Ma, Y.; Di, H.; Wang, X.; Jin, H.; Ryu, D. H.; Zhang, L. Adv. Synth. Catal. 2021, 363, 3201.
[7]
(a) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 3189.
[7]
(b) Miyazaki, T.; Han-ya, Y.; Tokuyama, H.; Fukuyama, T. Synlett 2004, 477.
[7]
(c) Fukuyama, T.; Tokuyama, H. Aldrichimica Acta 2004, 37, 87.
[7]
(d) Mori, Y.; Seki, M. Adv. Synth. Catal. 2007, 349, 2027.
[7]
(e) Cherney, A. H.; Reisman, S. E. Tetrahedron 2014, 70, 3259.
[8]
Um, P.-J.; Drueckhammer, D. G. J. Am. Chem. Soc. 1998, 120, 5607.
[9]
(a) Hirschbeck, V.; Gehrtz, P. H.; Fleischer, I. Chem. Eur. J. 2018, 24, 7092.
[9]
(b) Ye, Q.; Cao, W.-G.; Gao, J.-S. Chin. J. Org. Chem. 2002, 21, 697. (in Chinese)
[9]
( 叶青, 曹卫国, 高金森, 有机化学, 2002, 21, 697.)
[10]
(a) Magdziak, D.; Lalic, G.; Lee, M. H.; Fortner, K. C.; Aloise, A. D.; Shair, M. D. J. Am. Chem. Soc. 2005, 127, 7284.
[10]
(b) Orlandi, S.; Benaglia, M.; Cozzi, F. Tetrahedron Lett. 2004, 45, 1747.
[10]
(c) Sawa, M.; Miyazaki, S.; Yonesaki, R.; Morimoto, H.; Ohshima, T. Org. Lett. 2018, 20, 5393.
[10]
(d) Furutachi, M.; Mouri, S.; Matsunaga, S.; Shibasaki, M. Chem. Asian J. 2010, 5, 2351.
[11]
Walker, M. C.; Thuronyi, B. W.; Charkoudian, L. K.; Lowry, B.; Khosla, C.; Chang, M. C. Y. Science 2013, 341, 1089.
[12]
(a) Xiang, S.-H.; Tan, B. Nat. Commun. 2020, 11, 3786.
[12]
(b) Zhang, M.-M.; Luo, Y.-Y.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838. (in Chinese)
[12]
( 张毛毛, 骆元元, 陆良秋, 肖文精, 化学学报 2018, 76, 838.)
[12]
(c) Di, H.; Liu, Y.; Ma, Y.; Yang, X.; Jin, H.; Zhang, L. Chin. J. Org. Chem. 2021, 41, 2228. (in Chinese)
[12]
( 底慧明, 刘云婷, 马艳榕, 杨鑫悦, 金辉, 张立新, 有机化学, 2021, 41, 2228.)
[12]
(d) Ren, H.; Ma, M.; Huang, Y. Chin. J. Org. Chem. 2022, 42, 3129. (in Chinese)
[12]
任红霞, 马萌萌, 黄有, 有机化学, 2022, 42, 3129.).
[12]
(e) Chen, X.; Wang, H.; Jin, Z.; Chi, Y. R. Chin. J. Chem. 2020, 38, 1167.
[13]
Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1991, 56, 4218.
[14]
Um, P.-J.; Drueckhammer, D. G. J. Am. Chem. Soc. 1998, 120, 5605.
[15]
Alonso, D. A.; Kitagaki, S.; Utsumi, N.; Barbas III, C. F. Angew. Chem., Int. Ed. 2008, 47, 4588.
[16]
Hayashi, Y.; Yamada, T.; Sato, M.; Watanabe, S.; Kwon, E.; Iwasaki, K.; Umemiya, S. Org. Lett. 2019, 21, 5183.
[17]
Kohler, M. C.; Yost, J. M.; Garnsey, M. R.; Coltart, D. M. Org. Lett. 2010, 12, 3376.
[18]
Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry, 2nd ed., Oxford University Press, New York, 2012, pp. 628-630.
[19]
Kobuke, Y.; Yoshida, J.-i. Tetrahedron Lett. 1978, 19, 367.
[20]
(a) Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Aloise, A. D.; Shair, M. D. J. Am. Chem. Soc. 2005, 127, 7284.
[20]
(b) Fortner, K. C.; Shair, M. D. J. Am. Chem. Soc. 2007, 129, 1032.
[20]
(c) Lalic, G.; Aloise, A. D.; Shair, M. D. J. Am. Chem. Soc. 2003, 125, 2852.
[20]
(d) Orlandi, S.; Benaglia, M.; Cozzi, F. Tetrahedron Lett. 2004, 45, 1747.
[21]
Bae, H. Y.; Sim, J. H.; Lee, J.-W.; List, B.; Song, C. E. Angew. Chem., Int. Ed. 2013, 52, 12143.
[22]
Wang, Y.; Huang, G.; Hu, S.; Jin, K.; Wu, Y.; Chen, F. Tetrahedron Lett. 2017, 73, 5055.
[23]
(a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[23]
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 32.
[23]
(c) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[24]
Saadi, J.; Akakura, M.; Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 14248.
[25]
Saadi, J.; Wennemers, H. Nat. Chem. 2016, 8, 276.
[26]
Zetschok, D.; Heieck, L.; Wennemers, H. Org. Lett. 2021, 23, 1753.
[27]
(a) Bao, Y.; Kumagai, N.; Shibasaki, M. Chem. Sci. 2015, 6, 6124.
[27]
(b) Misaki, T.; Takimoto, G.; Sugimura, T. J. Am. Chem. Soc. 2010, 132, 6286.
[27]
(c) Yamaguchi, A.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 10842.
[27]
(d) Saito, S.; Kobayashi, S. J. Am. Chem. Soc. 2006, 128, 8704.
[27]
(e) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7, 3757.
[28]
Park, J. H.; Sim, J. H.; Song, C. E. Org. Lett. 2019, 21, 4567.
[29]
Ricci, A.; Pettersen, D.; Bernardi, L.; Fini, F.; Fochi, F.; Herrera, R. P.; Sgarzania, V. Adv. Synth. Catal. 2007, 349, 1037.
[30]
Pan, Y. H.; Kee, C. W.; Jiang, Z. Y.; Ma, T.; Zhao, Y. J.; Yang, Y. Y.; Xue, H. S.; Tan, C. H. Chem. Eur. J. 2011, 17, 8363.
[31]
Hara, N.; Nakamura, S.; Sano, M. Chem. Eur. J. 2012, 18, 9276.
[32]
(a) Takashina, N.; Price, C. C. J. Am. Chem. Soc. 1962, 84, 489.
[32]
(b) Rauhut, M. M.; Currier, H. A.; Semsel, A. M.; Wystrach, V. P. J. Org. Chem. 1961, 26, 5138.
[32]
(c) Morita, K.-i.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.
[33]
(a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
[33]
(b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035.
[33]
(c) Lu, X.; Du, Y.; Lu, C. Pure Appl. Chem. 2005, 77, 1985.
[33]
(d) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140.
[33]
(e) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
[33]
(f) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005.
[33]
(g) Marinetti, A.; Voituriez, A. Synlett 2010, 2010, 174.
[33]
(h) Lu, Y.; Wang, S.-X.; Han, X.; Zhong, F.; Wang, Y. Synlett 2011, 2011, 2766.
[33]
(i) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
[33]
(j) Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588.
[33]
(k) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
[33]
(l) Xiao, Y.; Sun, Z.; Guo, H.; Kwon, O. J. Org. Chem. 2014, 10, 2089.
[33]
(m) Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Acc. Chem. Res. 2016, 49, 1369.
[33]
(n) Li, W.; Zhang, J. Chem. Soc. Rev. 2016, 45, 1657.
[33]
(o) Ni, H.; Chan, W.-L.; Lu, Y. Chem. Rev. 2018, 118, 9344.
[33]
(p) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049.
[34]
(a) White, D. A.; Baizer, M. M. Tetrahedron Lett. 1973, 14, 3597.
[34]
(b) Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 10819.
[34]
(c) Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167.
[34]
(d) Trost, B. M.; Dake, G. R. J. Org. Chem. 1997, 62, 5670.
[34]
(e) Zhang, C.; Lu, X. Synlett 1995, 1995, 645.
[34]
(f) Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2225.
[34]
(g) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2009, 131, 14231.
[34]
(h) Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 4568.
[34]
(i) Lundgren, R. J.; Wilsily, A.; Marion, N.; Ma, C.; Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2013, 52, 2525.
[34]
(j) Chen, Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Org. Chem. 1998, 63, 5631.
[35]
(a) Zhong, F.; Dou, X.; Han, X.; Yao, W.; Zhu, Q.; Meng, Y.; Lu, Y. Angew. Chem., Int. Ed. 2013, 52, 943.
[35]
(b) Wang, T.; Yao, W.; Zhong, F.; Pang, G. H.; Lu, Y. Angew. Chem., Int. Ed. 2014, 126, 3008.
[35]
(c) Wang, T.; Yu, Z.; Hoon, D. L.; Huang, K.-W.; Lan, Y.; Lu, Y. Chem. Sci. 2015, 6, 4912.
[35]
(d) Wang, T.; Hoon, D. L.; Lu, Y. Chem. Commun. 2015, 51, 10186.
[35]
(e) Huang, G.; Ren, X.; Jiang, C.; Wu, J.-H.; Gao, G.; Wang, T. Org. Chem. Front. 2019, 6, 2872.
[36]
Wang, X.; Fang, F.; Zhao, C.; Tian, S.-K. Tetrahedron Lett. 2008, 49, 6442.
[37]
(a) Wang, H.-Y.; Zhang, K.; Zheng, C.-W.; Chai, Z.; Cao, D.-D.; Zhang, J.-X.; Zhao, G. Angew. Chem., Int. Ed. 2015, 54, 1775.
[37]
(b) Lou, Y.-P.; Zheng, C.-W.; Pan, R.-M.; Jin, Q.-W.; Zhao, G.; Li, Z. Org. Lett. 2015, 17, 688.
[37]
(c) Xu, L.; Wang, H.; Zheng, C.; Zhao, G. Adv. Synth. Catal. 2017, 359, 2942.
[37]
(d) Pan, R.; Zhang, J.; Zheng, C.; Wang, H.; Cao, D.; Cao, W.; Zhao, G. Tetrahedron 2017, 73, 2349.
[37]
(e) Ji, X.; Cao, W.-G.; Zhao, G. Tetrahedron 2017, 73, 5983.
[37]
(f) Jin, Q.; Zheng, C.; Zhao, G.; Zou, G. Tetrahedron 2018, 74, 4134.
[37]
(g) Wang, H.-Y.; Zheng, C.-W.; Chai, Z.; Zhang, J.-X.; Zhao, G. Nat. Commun. 2016, 7, 12720.
[38]
Zhang, H.; Jiang, C.; Tan, J.-P.; Hu, H.-L.; Chen, Y.; Ren, X.; Zhang, H.-S.; Wang, T. ACS Catal. 2020, 10, 5698.
[39]
(a) Fleming, F. F. Nat. Prod. Rep. 1999, 16, 597.
[39]
(b) Miller, J. S.; Manson, J. L. Acc. Chem. Res. 2001, 34, 563.
[39]
(c) Lindquist, B. A.; Furse, K. E.; Corcelli, S. A. Phys. Chem. 2009, 11, 8119.
[40]
(a) Laine, D.; Palovich, M.; McCleland, B.; Petitjean, E.; Delhom, I.; Xie, H.; Deng, J.; Lin, G.; Davis, R.; Jolit, A.; Nevins, N.; Zhao, B.; Villa, J.; Schneck, J.; McDevitt, P.; Midgett, R.; Kmett, C.; Umbrecht, S.; Peck, B.; Davis, A.-B.; Bettoun, D. ACS Med. Chem. Lett. 2011, 2, 142.
[40]
(b) Raja, V.-P.-A.; Perumal, S.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2011, 21, 3881.
[40]
(c) Casimiro-Garcia, A.; Trujillo, J.-I.; Vajdos, F.; Juba, B.; Banker, M.-E.; Aulabaugh, A.; Balbo, P.; Bauman, J.; Chrencik, J.; Coe, J.-W.; Czerwinski, R.; Dowty, M.; Knafels, J.-D.; Kwon, S.; Leung, L.; Liang, S.; Robinson, R.-P.; Telliez, J.-B.; Unwalla, R.; Yang, X.; Thorarensen, A. J. Med. Chem. 2018, 61, 10665.
[41]
Oyamada, Y.; Inaba, K.; Sasamori, T.; Nakamura, S. Chem. Commun. 2022, 58, 2172.
[42]
Lubkoll, J.; Wennemers, H. Angew. Chem., Int. Ed. 2007, 46, 6841.
[43]
Bae, H. Y.; Some, S.; Lee, J. H.; Kim, J.-Y.; Song, M. J.; Lee, S.; Zhang, Y. J.; Song, C. E. Adv. Synth. Catal. 2011, 353, 3196.
[44]
(a) Chiu, P.; Leung, L. T.; Ko, B. C. B. Nat. Prod. Rep. 2010, 27, 1066.
[44]
(b) Florence, G. J.; Gardnerb, N. M.; Paterson, I. Nat. Prod. Rep. 2008, 25, 342.
[44]
(c) Boucard, V.; Broustal, G.; Campagne, J. M. Eur. J. Org. Chem. 2007, 225.
[44]
(d) Mondon, M.; Gesson, J.-P. Curr. Org. Synth. 2006, 3, 41.
[45]
Ren, Q.; Sun, S.; Huang, J.; Li, W.; Wu, M.; Guo, H.; Wang, J.: Chem. Commun. 2014, 50, 6137.
[46]
Clerici, P.; Wennemers, H. Org. Biomol. Chem. 2012, 10, 110.
[47]
Kolarovic, A.; K?slin, A.; Wennemers, H. Org. Lett. 2014, 16, 4236.
[48]
Ling, T.; Rivas, F. Tetrahedron 2016, 72, 6729.
[49]
(a) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.
[49]
(b) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
[49]
(c) Liu, Y.; Han, S. J.; Liu, W. B.; Stoltz, B. M. Acc. Chem. Res. 2015, 48, 740.
[49]
(d) Li, C.; Ragab, S. S.; Liu, G.; Tang, W. Nat. Prod. Rep. 2020, 37, 276.
[50]
(a) Arakawa, Y.; Fritz, S. P.; Wennemers, H. J. Org. Chem. 2014, 79, 3937.
[50]
(b) Musa, M. A.; Cooperwood, J. S.; Khan, M. O. F. Curr. Med. Chem. 2008, 15, 2664.
[50]
(c) Asai, F.; Iinuma, M.; Tanaka, T.; Takenaka, M.; Mizuno, M. Phytochemistry 1992, 31, 2487.
[51]
Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157.
[52]
Engl, O. D.; Fritz, S. P.; K?slin, A.; Wennemers, H. Org. Lett. 2014, 16, 5454.
[53]
Cosimi, E.; Saadi, J.; Wennemers, H. Org. Lett. 2016, 18, 6014.
[54]
(a) He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088.
[54]
(b) Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode, J. W. J. Am. Chem. Soc. 2010, 132, 8810.
[54]
(c) Belmessieri, D.; Morrill, L. C.; Simal, C.; Slawin, A. M.; Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714.
[54]
(d) Mahatthananchai, J.; Kaeobamrung, J.; Bode, J. W. ACS Catal. 2012, 2, 494.
[54]
(e) Morrill, L. C.; Douglas, J.; Lebl, T.; Slawin, A. M.; Fox, D. J.; Smith, A. D. Chem. Sci. 2013, 4, 4146.
[54]
(f) Yao, W.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2015, 137, 54.
[54]
(g) Young, C. M.; Stark, D. G.; West, T. H.; Taylor, J. E.; Smith, A. D. Angew. Chem., Int. Ed. 2016, 55, 14394.
[54]
(h) Zhang, M. L.; Wu, Z. J.; Zhao, J. Q.; Luo, Y.; Xu, X. Y.; Zhang, X. M.; Yuan, W. C. Org. Lett. 2016, 18, 5110.
[54]
(i) Xu, D.; Zhang, Y.; Ma, D. Tetrahedron Lett. 2010, 51, 3827.
[54]
(j) Sinha, D.; Perera, S.; Zhao, J. C. G. Chem. Eur. J. 2013, 19, 6976.
[55]
Jin, H.; Lee, J.; Shi, H.; Lee, J. Y.; Yoo, E. J.; Song, C. E.; Ryu, D. H. Org. Lett. 2018, 20, 1584.
[56]
Bahlinger, A.; Fritz, S. P.; Wennemers, H. Angew. Chem., Int. Ed. 2014, 53, 8779.
[57]
Cosimi, E.; Engl, O. D.; Wennemers, H. Angew. Chem., Int. Ed. 2016, 55, 13127.
[58]
(a) Mitsunuma, H.; Shibasaki, M.; Kanai, M. Angew. Chem., Int. Ed. 2012, 51, 5217.
[58]
(b) Shimizu, Y.; Kanai, M.; Shibasaki, M. Angew. Chem., Int. Ed. 2010, 49, 1103.
[58]
(c) Overman, L. E.; Paone, D. V.; Stearns, B. A. J. Am. Chem. Soc. 1999, 121, 7702.
[58]
(d) Lemieux, R. M.; Meyers, A. I. J. Am. Chem. Soc. 1998, 120, 5453.
[59]
Liu, T.; Liu, W.; Shao, Z. J. Org. Chem. 2015, 80, 4950.
[60]
Engl, D. O.; Fritz, S. P.; Wennemers, H. Angew. Chem., Int. Ed. 2015, 54, 8193.
[61]
(a) Trost, B. M.; Chung, C. K.; Pinkerton, A. B. Angew. Chem., Int. Ed. 2004, 43, 4327.
[61]
(b) Fleming, J. J.; Du Bois, J. J. Am. Chem. Soc. 2006, 128, 3926.
[62]
Wang, Y.; Mo, M.; Zhu, K.; Zheng, C.; Zhang, H.; Wang, W.; Shao, Z. Nat. Commun. 2015, 6, 8544.
[63]
Ye, W.; Jiang, Z.; Zhao, Y.; Goh, S. L. M.; Leow, D.; Soh, Y.-T.; Tan, C.-H. Adv. Synth. Catal. 2007, 349, 2454.
[64]
Jiang, Z.; Yang, Y.; Pan, Y.; Zhao, Y.; Liu, H.; Tan, C.-H. Chem. Eur. J. 2009, 15, 4925.
[65]
Xu, J.; Fu, X.; Low, R.; Goh, Y.-P.; Jiang, Z.; Tan, C.-H. Chem. Commun. 2008, 5526.
[66]
(a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
[66]
(b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
[67]
Jin, H.; Kim, S. T.; Hwang, G.-S.; Ryu, D. H. J. Org. Chem. 2016, 81, 3263.
[68]
(a) Sim, J. H.; Song, C. E. Angew. Chem., Int. Ed. 2017, 56, 1835.
[68]
(b) Klijn, J. E.; Engberts, J. B. F. N. Nature 2005, 435, 746.
[68]
(c) Jung, Y.; Marcus, R. A. J. Am. Chem. Soc. 2007, 129, 5492.
[68]
(d) Guo, W.; Liu, X.; Liu, Y.; Li, C. ACS Catal. 2018, 8, 328.
[68]
(e) Kitanosono, T.; Kobayashi, S. Chem. Eur. J. 2020, 26, 9408.
[68]
(f) Cortes-Clerget, M.; Yu, J.; Kincaid, J. R. I.; Walde, P.; Gallou, F.; Lipshutz, B. H. Chem. Sci. 2021, 12, 4237.
[69]
Sim, J. H.; Park, J. H.; Maity, P.; Song, C. E. Org. Lett. 2019, 21, 6715.
[70]
(a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
[70]
(b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
[70]
(c) Wu, X.; Li, M.; Gong, L. Acta Chim. Sinica 2013, 71, 1091. (in Chinese)
[70]
( 吴祥, 李明丽, 龚流柱, 化学学报 2013, 71, 1091.)
[71]
Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 3823.
[72]
Song, J.; Shih, H.-W.; Deng, L. Org. Lett. 2007, 9, 603.
[73]
Bae, H. Y.; Kim, M. J.; Sim, J. H.; Song, C. E. Angew. Chem., Int. Ed. 2016, 55, 10825.
[74]
Gulevich, A. V.; Zhdanko, A. G.; Orru, R. V. A.; Nenajgenko, V. G. Chem. Rev. 2010, 110, 5235.
[75]
Odriozola, A.; Oiarbide, M.; Palomo, C. Chem. Eur. J. 2017, 23, 12758.
[76]
Oh, J.-S.; Lee, J.-W.; Ryu, T. H.; Lee, J. H.; Song, C. E. Org. Biomol. Chem. 2012, 10, 1052.
[77]
Yoshida, Y.; Kasuya, R.; Mino, T.; Sakamoto, M. Org. Biomol. Chem. 2021, 19, 6402.
[78]
(a) Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. J. Am. Chem. Soc. 1997, 119, 12974.
[78]
(b) Nishimura, K.; Tomioka, K. J. Org. Chem. 2002, 67, 431.
[78]
(c) Dong, X.-Q.; Fang, X.; Wang, C.-J. Org. Lett. 2011, 13, 4426.
[78]
(d) Fang, X.; Li, J.; Wang, C.-J. Org. Lett. 2013, 15, 3448.
[79]
Rigby, C. L.; Dixon, D. J. Chem. Commun. 2008, 39, 3798.
[80]
Destro, D.; Bottinelli, C.; Ferrari, L.; Albanese, D. C. M.; Bencivenni, G.; Gillick-Healy, M. W.; Adamo, M. F. A. J. Org. Chem. 2020, 85, 5183.
[81]
Maddocks, C. J.; Ermanis, K.; Clarke, P. A. Org. Lett. 2020, 22, 8116.
[82]
Fukata, Y.; Okamura, T.; Asano, K.; Matsubara, S. Org. Lett. 2014, 16, 2184.
[83]
Ahlemeyer, N. A.; Birman, V. B. Org. Lett. 2016, 18, 3454.
[84]
Ahlemeyer, N. A.; Streff, E. V.; Muthupandi, P.; Birman, V. B. Org. Lett. 2017, 19, 6486.
[85]
Lu, H.; Zhang, J.-L.; Liu, J.-Y.; Li, H.-Y.; Xu, P.-F. ACS Catal. 2017, 7, 7797.
[86]
(a) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593.
[86]
(b) Minko, Y.; Pasco, M.; Lercher, L.; Botoshansky, M.; Marek, I. Nature 2012, 490, 522.
[87]
Giacalone, F.; Gruttaduria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406.
文章导航

/